
CHAPTER 1

Over 50 Years of Image Moments and Moment Invariants

George A. Papakostas

This chapter aims to analyze the research �eld of moments and moment invariants
in a holistic way. Initially, a literature analysis of the last 50 years is presented and
discussed in order to highlight the potential of this topic and the increasing interest
in many disciplines. A more in depth study of the issues addressed through the years
by the researchers is next presented both in theory and applications of moments. The
most representative works in each research direction are discussed in a chronological
order to point out the progress in each speci�c �eld of action. This analysis concludes
with the challenges and perspectives that should motivate researchers towards the
promotion of the moments and their invariants to new scienti�c �horizons�.
For the �rst time, this chapter gives a global overview of what happened in the last

50 years in moments and moment invariants research �eld, but most of all it brings
to light the open issues that should be addressed and highlights the rising topics that
will occupy the scientists in the coming years. This chapter serves as a guide to those
who �nd the �eld of moments and moment invariants a �brilliant �eld of action� since
it encloses all the milestones of this �eld.
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1.1 Introduction

The �rst introduction of 2-D moments in engineering life was performed by Hu in 1962
[60]. Hu proposed the 2-D geometric moments of a distribution function (an image)
as a structured element of what he called �moment invariants�. In that work, Hu
used the theory of algebraic invariants in order to de�ne seven orthogonal invariants
to linear transformations (translation, rotation, scaling, skew).

Since then, after more than 50 years of research, a lot of new achievements in the
theory of moments and moment invariants have been presented. The resulted new
theoretical framework has boosted the applicability of moments in many disciplines,
while a continuously increasing number of scientists have set the moments in the
center of their research.

The next milestone was the introduction of orthogonal moments by Teague [150] in
1980. Teague proposed Zernike and Legendre orthogonal moments in image analysis
as a solution to the inherent drawback of geometric moments and Hu's invariants
too, the high information redundancy. Geometric moments are the projection of the
intensity function of an image onto speci�c monomials, which do not construct an
orthogonal basis. Orthogonal moments came to overcome this disadvantage of the
conventional moments since their kernels are orthogonal polynomials. The property of
orthogonality gives to the corresponding moments the feature of minimum information
redundancy, meaning that di�erent moment orders describe di�erent part of the image.

The �rst detailed analysis of moments' properties and performance in image analysis
was performed by Teh and Chin's [151]. This analysis had inspired all the later works
in orthogonal moments and helped to understand the power of describing an image in
terms of an orthogonal polynomials' base. As a consequence of Teh and Chin [151]
work was the introduction of Zernike moments in pattern recognition by Khotanzad
and Hong [71]. Since then Zernike moments constituted the most popular moment
family due to their inherent property of being invariant under rotation and �ipping of
the image.

Belkasim et al. [8] investigated the performance of the moment invariants by com-
paring the algebraic and orthogonal moment invariants proposed until then, in pattern
recognition applications. This comparative study resulted to a new set of Zernike
moment invariants derived by proper normalization of the corresponding moments in
order to reduce their range.

The next milestone was the introduction of a�ne moment invariants by Flusser and
Suk [33]. They extended Hu's algebraic moment invariants to general a�ne trans-
formations by proposing four a�ne moment invariants. The signi�cance of a�ne
moment invariants was their capability to recognize a�ne-deformed patterns com-
monly occurring in real pattern recognition problems such as character recognition
and shape classi�cation.

The following 20 years moments and moment invariants have attracted the attention
of scientists towards the construction of new moment families [47, 49, 50, 43, 96,
121, 182, 186, 201, 199], the improvement of the computation accuracy [83, 95,
108, 52, 168], the development of fast computation algorithms [97, 21, 116, 53], the
embodiment of invariant properties to the moment functions[7, 16, 22, 45, 69], etc.
On the other hand an increased number of applications have been shown suitable
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for applying moments and moment invariants such as image analysis [203, 202, 20],
pattern recognition [1, 44, 94, 103, 105, 111, 66], multimedia watermarking [3, 72,
177, 165, 158], image retrieval [170, 136, 137], medical image analysis [24, 87, 173],
forensics [89, 38, 86, 131], etc.

This chapter aims to provide an overview of the research in the �eld of moments
and moment invariants since the �rst introduction of moment invariants by Hu [60].
Initially, a literature analysis of the last 50 years is presented and discussed in order to
highlight the high potential of this topic. Moreover, this chapter provides an in depth
study of the issues that have been addressed through the years by the researchers both
in theory and applications of moments. The most representative works in each research
direction are discussed in a chronological order to point out the progress in each speci�c
�eld of action. This analysis concludes with the challenges and perspectives that should
motivate the researchers towards the promotion of the moments and their invariants
to new scienti�c �horizons�. This chapter aims to serve as a guide to those who are
interested in knowing the evolution of moments and moment invariants and to promote
the current scienti�c achievements to the next levels.

The chapter is organized as follows: Section 1.2 brie�y discusses the background
of moments' de�nitions by providing the necessary information regarding the moment
types and their corresponding properties. Section 1.3 presents a detailed literature
analysis by discussing the publication activity in the �eld of moments and moment
invariants during the last 50 years. Section 1.4 summarizes all the attempts towards the
dissemination of knowledge about the moments such as books and organized events.
Section 1.5 reviews the directions towards theory and applications that scientists have
focused their research on, by discussing the reasons which generated each need, the
current state and the future challenges of each issue. Section 1.6 determines the big
challenges for the community of moments and �nally Section 1.7 concludes the overall
chapter by highlighting the most important discussed issues.

1.2 Background

Before proceeding with the demonstration and discussion of the research directions in
moments and moment invariants, it is constructive to give a short introduction to the
fundamentals of moment functions.

Traditionally, the orthogonal image moments are considered as statistical quantities
that describe the pixels distribution inside an image's space. Mathematically, they
are computed as the projections of an image to the orthogonal basis of the used
polynomials. From an engineering and computer science point of view, the orthogonal
moments represent the similarity between the image and a number of image patterns
formed by the kernel function of each moment family [101].

1.2.1 Moment Functions Taxonomy

The most straightforward way to classify the moment functions is based on their
dimension (number of variables). Thus, there are 1-D , 2-D and 3-D moment functions
applied on signals (one dimensional), images and volumes respectively, as illustrated
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Figure 1.1: Moment functions taxonomy: Case 1 - Dimension of the distribution
function.

in Fig.(1.2.1).

Although the moment functions can be of any number of variables, herein we are
interested in the 2-D moments of an image. Moreover, even though there are or-
thogonal and non-orthogonal moment types the following presentation is restricted to
orthogonal moments due to their popularity.

The moment functions are characterized by the type of the polynomials base, re-
sulting to a number of di�erent moment types with speci�c properties. However,
there are several other more general characteristics that can de�ne the moments tax-
onomy. Moments are classi�ed to continuous and discrete, whereas their coordinate
space is the continuous real space or the the discrete space of the image. This case
of moments classi�cation, regarding the type of the coordinate space along with some
representative moment families of each type, is depicted in Fig.(1.2). Since we are
interested in the moments of an image intensity function the continuous moments
should be transformed (zero-th order approximation) to a form suitable for applying
on the image.

The general computation form of the (p+ q)-th order of any moment type and of
an image intensity function f (x, y) of N ×N pixels size is de�ned as:

Mpq = NF ×
N−1∑
x=0

N−1∑
y=0

Kernelpq (x, y) f (x, y) ,

where Kernelpq (·) corresponds to the moment's kernel consisting of the product of
the speci�c polynomials [116, 101] of order p and m , which constitute the orthogonal
basis and NF is a normalization factor. The type of Kernel's polynomial gives the
name to the moment family by resulting to a wide range of moment types Fig.(1.2).

Recently, there is an increased interest in the computation of color images [17, 69,
68, 15], by making the already proposed methods for the gray-scale images inappro-
priate for being applied. Therefore, the moments can be categorized according to the
depth of the intensity function 1.3 to 8-bit (gray-scale) and 24-bit (color) moment
functions.
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Figure 1.2: Moment functions taxonomy: Case 2 - Coordinate space.

Figure 1.3: Moment functions taxonomy: Case 3 - Intensity depth.
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1.2.2 Moment Invariants

Although moments are e�cient descriptors of the image's content, they are sensitive
to several geometric (rotation, translation, scaling, a�ne) and non-geometric (blur)
transformations of the image. In order to alleviate this shortcoming scientists have pro-
posed their invariants called moment invariants. These values have the same properties
as the corresponding moments and they are robust to several image deformations. The
moment invariants [8] are widely used as discrimination features in pattern recognition
and classi�cation applications.

1.3 Literature Analysis

As it is stated in the introduction section, the main goals of this chapter is the jus-
ti�cation of the continuously increased scienti�c interest in moments and moment
invariants, the presentation of the research directions showing considerable activity
and the declaration of the research actions that should be followed in order to further
improve and spread the multi-discipline utilization of moments and their invariants.
While the last two objectives will be satis�ed via a brie�y description of what has been
done and what needs to be done in the �eld of moments, the former objective can be
achieved by analyzing the publications related to moments in the literature through
the years.
The analysis of the literature in order to �nd and count the number and type of

publications during a certain period constitutes a laborious task. However, for this
study it is decided to make use of the well known Scopus bibliographic database [25],
which is commonly accepted by the scienti�c community and includes enough infor-
mation for our analysis. The searching has been performed by applying the keywords
moments, image, and moment invariants, which are necessary to appear in the Title,
Abstract, and Keywords sections of the publications.
The period of our analysis was set from the introduction of moment invariants by

Hu [60] in 1962 to the current year 2014, although the publication activity of latter
year is still in progress. Moreover, we are interested only in three types of publications
namely, Journals, Book Chapters and Conference papers. In the hereafter results the
�rst two types are tackled as a single one since the number of book chapters is quite
small.
Figure 1.4, illustrates the number of papers published in the last 50 years, where

the period 1962-1980 is merged due to the very small number of published studies, in
time step of 5 years. From this plot, the upward trend of the interest in moments and
moment invariants is obvious with the 5-year period 2005-2010 being characterized by
the rapid increase of all types of publications. Moreover, the importance of moments'
�eld is justi�ed by the publication of more journals and book chapters, known for the
more rigorous review process, than conferences.
By focusing our analysis on the time period of the last 10 years it can be also

derived that 2009 was the most productive year in the history of moments and moment
invariants, during which 1,231 papers of all types have been published. This number
is very big considering the high competitiveness taking place in the �eld of image
description and re�ects the ampli�cation of the engagement of new scientists with the
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Figure 1.4: Moments related publications for the past 50 years (per 5 years).
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Figure 1.5: Per year moments related publications for the last 10 years.
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moments related topics. In the following years the publishing activity has attained the
same levels with 2009, with the number of journals and book chapters showing an
upward trend.

Conclusively, can be stated that the research in the �eld of moments experiences
its highest evolution so far. The outcomes of this study should be translated to more
research activities, since time and high prior-knowledge favor the discovering and de-
veloping of the next generation frameworks in both moments' theory and applications.

1.4 Knowledge Dissemination

Apart from the publications in international journals and conferences the dissemination
of knowledge regarding moments and moment invariants, some other types of actions
have been performed in the past too. Towards this direction three popular books have
been published until now, which permit the early stage researchers in this topic to
study the basics of moments and moment invariants.

The �rst book was written by Mukundan and Ramakrishnan [98] in 1998 and con-
stituted the only text for the researchers for about 10 years. This book summarizes
the main theoretical aspects of several moment functions, with emphasis to their ap-
plication in image analysis. Moreover, it discusses and proves analytically some useful
properties of the moment functions and reviews the main publications proposed until
then.

The second book was written by Pawlak [120] in 2006. This book provides a
di�erent approach to the moment theory from the previous book, since it focuses
on the reconstruction performance of the moment functions, with emphasis to their
computation accuracy. The advantage of this book is that it is available [120] for free
downloading and thus anyone can retrieve it.

The third book was written by Flusser et al. [36] in 2009, only 3 and 10 years
after the Pawlak's and Mukundan's books respectively. The mentioned time span
is signi�cant since it gives us an indication of the di�erences between the books'
contents and thus the amount of novel information they contain. The third book can
be compared only with the Mukundan's book, since it constitutes its update version
enriched with the theory developed in the meanwhile and with emphasis to pattern
recognition applications. These di�erences make the third book the current textbook
for any researcher in this research �eld.

Finally, for the dissemination of moments a special session in the International
Conference of Image Analysis and Recognition (ICIAR) was organized recently by Al-
Rawi et al. [2]. However, the small number of contributed papers and its temporary
nature have shown that additional e�orts should be made in collaboration with the
most eminent scientists in this �eld in order to establish a frequent annual event
(e.g. special session or workshop) as the major meeting for the moments' knowledge
dissemination.
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1.5 Research Directions

Although the moment functions and their invariants were introduced almost 50 years
ago, their evolution was extremely signi�cant only in the last 20 years. The develop-
ment of novel theoretical frameworks have boosted the disciplines of their application.
In this section, it is attempted to present some important snapshots of progress in
both moments' theory and applications.

1.5.1 Theory

It is well known that the dissemination of a speci�c research �eld is highly dependent
on the amount and accuracy of the theoretical framework that supports its scienti�c
correctness. Following the aforementioned trend and towards the alleviation of spe-
ci�c weaknesses and limitations of the fundamental moment theory, scientists have
built new tools and methods. The most representative achievements in the theory
of moments and moment invariants are summarized and highlighted in the hereafter
subsections.

1.5.1.1 Fast Computation

Due to the fact that the computation of a moment or a moment invariant consists
of the evaluation of the moment's base in each point of the distribution function
(intensity function in the case of an image), the whole procedure is time consuming.
The computation time is further increased in the case of the moments of an image
(2-D or 3-D), since the moment's base should be evaluated across each dimension of
the intensity function. Moreover, when a set of orthogonal moments is to be computed
the computation time increases exponentially because of the high complexity of the
polynomial basis. Therefore, the development of fast computation algorithms [116]
were a primary target of the scientists for many years, while their achievements helped
towards the computation of moments for big image data.

Mainly, the developed algorithms which ensure high computation speeds of image mo-
ments are divided into two di�erent approaches: (1) Polynomial level and 2) Pixels
level. Moreover, the latter approach is realized under three possible alternatives:

Approach 1 (Polynomial level) - The most common practice to reduce the time
needed to compute the polynomial basis is to apply a recurrence formula to com-
pute each polynomial order by using polynomials of lower orders. Several algo-
rithms presented in the past introduced recursive algorithms which avoid the direct
computation of the polynomials of any order, instead simpli�ed recursive formulas
were proposed. Such algorithms have been applied for the computation of Zernike
[74, 122, 97, 21, 104, 106], Legendre [97], Fourier-Mellin [102, 162] moments etc. It
is worth noting that some polynomials are equipped by recurrence computation for-
mulas on their own such as Tchebichef [96], Krawtchouk [186], dual-Hahn [187, 201]
Gaussian-Hermite [182] moments etc.
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Approach 2 (Pixels level) - Another way to reduce the computation time of mo-
ments is to decrease the number of pixels where the polynomials are evaluated with-
out loosing useful information. This can be achieved by either exploiting polynomials'
symmetry properties (symmetric pixels have identical contribution to the moment cal-
culation) or by treating the image as a set of intensity slices consisting of homogenous
(with the same intensity value) rectangular blocks. According to the former strategy
[96, 185, 61, 199] it is not necessary to compute the polynomial values for all symmet-
ric pixels but only for a small portion of them, depending on the symmetry type. The
latter strategy [145, 112, 115, 113, 134, 47] decomposes the moments computation
to partial computations over rectangular homogenous blocks thus their moments can
be derived easier. These two computation schemes show some limitations, the �rst
strategy is applied only for those polynomials which exhibit symmetries and the second
one can be applied only for polynomials de�ned in the Cartesian coordinate space. In
this category can be also included an alternative computation scheme [53, 56]which is
making use of the separability property of the moment transform permitting the com-
putation of the moments in two steps, by successive computation of the corresponding
1-D moments for each row.

It is worth noting that some of the above algorithms can operate in combination
[116, 113] under speci�c con�gurations in order to take advantage of each algorithm's
acceleration capabilities. Furthermore, although these algorithms have been applied to
compute the moments of an entire image, they can be used to compute the moments
of image's partitions in a block-based computation scheme [116]. In this case, when
image reconstruction is needed some partitioning e�ects occur, where each sub-image
generates dark edges that degrade the overall reconstructed image quality.

Finally, following the recent trends of applying high performance hardware and soft-
ware schemes for time consuming tasks, some researchers have proposed GPU based
moments computation algorithms [153, 180, 64, 127]. Although, the introduced GPU
accelerated algorithms show an improved computation speed, there is still room for
more e�cient accelerated algorithms that take advantage of the GPU resources (cores,
threads, blocks, shared memory).

1.5.1.2 Computation Accuracy

According to the moments taxonomy presented in Section 1.2 the moments functions
are classi�ed to continuous and discrete in respect to the nature of their coordinate
space. Only for the case of continuous moment functions, their computation over a
the discrete pixels space of an image, encounters some inaccuracies. These errors are
of two types namely geometric and numerical errors [83, 168, 178]. The �rst type of
errors is caused by the projection of a square discrete image onto the domain (e.g. the
unit disc for the radial polynomials) of the polynomial basis, while the numerical errors
are occur due to the calculation of the double integral over �xed sampling intervals,
by applying the zeroth order approximation.transformation.

Several approaches have been proposed in the literature towards the minimization
of both error types. More precisely, the geometric errors are minimized by applying
speci�c mapping techniques from the image space to the polynomials [168] domain
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and appropriate pixels arrangement methodologies [83]. The numerical integration
errors are decreased by applying either analytical [168, 52, 56] or approximate iterative
integration algorithms (e.g. Simpson, Gauss) [83, 55]. Currently, by using the afore-
mentioned techniques the derived moment values are very close to their theoretical
values and thus the achieved accuracy level is satisfactory.

1.5.1.3 Numerical Stability

Apart from the aforementioned computation errors, caused by the inherent weaknesses
to apply the mathematical formulas to the set of image's pixels, the computation of
image moments reveals some additional numerical instabilities [95, 108, 102, 109, 142,
143, 144, 126].
Recently, the author and his colleagues have analyzed the numerical behavior of

the recursive algorithms for Zernike moments computation [108, 109]. They found
that under certain circumstances some truncation errors called �nite precision errors
occur in an iteration of the algorithms, which is increased iteration by iteration and
�nally they cause the collapse of the algorithm. These errors are generated by speci�c
mathematical operations such as subtraction and division.
The other common numerical instability occurring during the computation of image

moments are the over�ows [102, 106] due to the existence of big numbers and the
great amount of operations between them. The over�ows are more frequent with
the increase of moment orders and the size of the image. This is the reason why
the reconstruction of an image is considered only for small images (< 1024 × 1024
pixels). Moreover, the presence of big quantities during the computation causes large
variations in the dynamic range of moment values, [95]. In order to overcome this
situation scaled moments were proposed[96, 185].
The numerical instabilities are responsible for the limitation of the maximum moment

computed order along with the limitation to the size of the image being processed.

1.5.1.4 Invariance Embodiment

The introduction of moment invariants under the basic geometric transformation
(translation, scale and rotation) by Hu [60], has shown the way to the most important
application of moment function, to pattern/object recognition and data classi�cation
problems. The �ve Hu's invariants were based on the conventional geometric moments
and their normalized versions. However, due to the description limitations (e.g. high
information redundancy) of the geometric moments and the rising of the orthogonal
moments, the moment invariants have been revised.
Mainly, there are two types of methodologies that derive invariant moments of an

image, either by image coordinates normalization and description through the ge-
ometric moment invariants [98] or by developing new computation formulas which
are characterized by invariant properties inherently [7, 22, 200]. In the �rst type of
methods, we can also categorize the algebraic moment invariants since they use the
geometric moments as a structural element.
Realizing the importance of describing and recognizing a scene/object/pattern de-

spite the position, orientation, scale etc. of the region of interest inside an image, sev-
eral moment invariants have been proposed: A�ne [33, 148], Rotation [31, 32, 174],
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Geometric [179, 45], Orthogonal [185, 184, 69, 183], Blur [35, 193], Projective [189]
moment invariants.

Recently, combined moment invariants which ensure invariant moment description
under more than one geometric and non-geometric transformations, have been intro-
duced [146, 197, 193, 16]. The combined invariants are very useful but they derive
di�cultly. The development of invariant moments under multiple geometric and non-
geometric image transformations in combination, constitutes one of the hot topics in
the �eld of moments.

Moreover, it is worth noting that a particular type of moment invariants called
Complete moment invariants [39, 194] exhibiting some very useful properties, has been
reported in the literature. The construction of a complete set of moment invariants is
performed in terms of the corresponding moments of the same orders. This description
has the advantage of enabling the inverse computation of the contributed moments
from the corresponding invariants and vice versa (duality) .

1.5.1.5 Novel Moment Families

In the last 10 years there was an increased interest in developing new moment families
and their corresponding invariants. As a result of this intense action is the introduc-
tion of new types of moments having improved properties as far as their description
capabilities and invariance behavior are concerned.

In this context, the group of Geometric [60], Zernike [150], Pseudo-Zernike [150],
Fourier-Mellin [133], Legendre [150] traditional moments, initially was enriched with
the Tchebichef [96], Krawtchouk [185], dual-Hahn [201, 187], Racah [199], discrete
moments exhibiting high computation accuracy. More moments such as Polar Har-
monic Transforms [184, 49, 48] Wavelet [11, 117, 141], Gaussian-Hermite [182],
Bessel-Fourier [175], Jacobi-Fourier [121, 12], Gegenbauer [82, 55], Charlier [46], Co-
moments [189], Exponent [59], Variant [43] and Spline [19] moments were introduced
in a way to �nd more informative and robust descriptors.

Recently, a new type of moments called separable moments [196, 47] was proposed.
The separable moments are constructed by using a combination of di�erent polynomi-
als for each dimension. In this way the separable Chebyshev-Gegenbauer, Gegenbauer-
Legendre, Tchebichef-Krawtchouk, Krawtchouk-Hahn etc. [196] and Charlier-{Tchebichef,
Krawtchouk, Hahn} [47] were proposed. The separable have shown improved descrip-
tion capabilities compared to their non-separable versions, while their application in
several disciplines constitutes a new �eld of action.

1.5.1.6 Color Moments

The increased usage of camera equipped devices in the every day life such as computers,
mobiles, tablets etc. has triggered the need for e�cient processing of color images. In
the �eld of moments and moment invariants little work has been reported regarding
the computation of moment function for color images.

The most straightforward practice is to compute the moments of each color chan-
nel separately [94, 147] and use them as 3-tuples for image analysis and recognition
purposes. However, this approach has the disadvantages of applying the computation
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scheme for three times, by adding signi�cant time overhead and the color information
is not described in a compact way in a single number. Another similar approach is
to �rst apply a color space transform (RGB to HSV) in order to isolate the color in-
formation into a single channel where the moments are being computed. In this case
non-color useful information might be discarded.

However, in the last 2-3 years the perspective of applying quaternion analysis (a
generalization of the complex analysis) in order to describe the color information of an
image in a compact way has been promoted. The �rst introduced quaternion moments
were the Quaternion Fourier-Mellin moments proposed by Guo and Zhu [42] in 2011.
According to quaternion analysis, each image pixel is represented as a four-dimensional
number called quaternions. After the �rst introduction of quaternion moments, the
Quaternion Zernike [17, 15] and Quaternion Bessel-Fourier [132] moments and moment
invariants [41, 93] were proposed. The author and his colleagues have developed a
uni�ed methodology [68, 70] to produce quaternion moments and moment invariants
of any polynomial type, by giving scientists the option to derive the most appropriate
to their applications color moments.

1.5.1.7 3D Moments and Moment Invariants

The evolution of the stereo imaging, by providing scene information in the three-
dimensional (3-D) coordinate space, along with the development of cheap stereo cam-
eras, has generated the need for moments computation of volumes. Although the
concept of 3-D moments is not new [130, 13, 100], few works for handling 3-D mo-
ments and moment invariants have been reported. This is probably due to the small
number of 3-D volumetric images that are incorporated in the every day life of humans.
However, in the last years there is an increased interest in accelerating and improving
the description capabilities of the 3-D moments, while novel 3-D moment families and
moment invariants have been proposed [149, 54, 172].

What is worth investigating, is the way the previously introduced computation algo-
rithms for 2-D images can be applied for the case of 3-D volumetric data. This research
direction can lead to more uni�ed computation schemes permitting the computation
of the moments of any image modality.

1.5.1.8 Moments Selection

A common practice in using moments, is the computation of all moments up to
a certain order and use them supposing that they describe adequately the image's
content. However, this �ad hoc� usage of image moments is not optimal, in the
sense that no prior knowledge regarding the problem at hand is taken into account,
to guarantee the selected moments are the most appropriate for the speci�c task. A
possible solution to this issue is the application of an additional process that selects,
from a large pool, the moment features which best perform in terms of description
accuracy (e.g. reconstruction error, recognition rate).

To this direction, few works have been reported in the literature applying a selection
mechanism in order to select the most appropriate moments for a speci�c application.
The most of these methods selected moment features in a wrapper scheme by taking
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into account the model (e.g. classi�er) that handle the selected moments through
the application of an Evolutionary optimization algorithm such as a Genetic Algorithm
(GA) [107, 67, 101].
However, the main disadvantage of the GA-based selection is its high computation

time for converging to a suitable solution. This drawback makes the �lter selection
methods [101] an attractive alternative approach. These methods do not use the
mining model, instead the internal data properties/characteristics (dependency, corre-
lation etc.) are taken into consideration. It is worth noting that this research direction
is open, since the need for a fast and adequate moment selection methodology which
takes into account the particularities of each application still exists.

1.5.2 Applications

From the previous sections presenting the theoretical aspects of moments and moment
invariants can be concluded that the evolution of the moment functions theory has been
also motivated by the increased needs of using moments and their invariants in many
disciplines. Although the applications of the moments and their invariants increase year
by year, there are some �elds of applications where moments have provided important
solutions when compared with other similar methodologies. The applications where
the moments have shown signi�cant impact through the years constitute the subject
of this section. This impact is analyzed by presenting the way moments and their
invariants are being incorporated.

1.5.2.1 Image Analysis

Although moment functions can be of any dimension, their 2-D realization has found
signi�cant applications in image analysis. The ability of image moments to capture
the content information of an image in a compact way and with minimum redundancy,
makes them appropriate to describe the pixels distribution of the image uniquely. Due
to these important properties image moments have been used successfully in texture
segmentation [160], image registration [34, 23], sub-pixel edge detection [40, 10],
rotation angle estimation [125, 73], image compression [99, 124], image denoising
[65, 188], shape analysis [92, 203, 202] and image matching [20]. Recently, image
moments have shown promising performance in describing the quality of images [169,
152] by giving a quality index close to human's perception.

1.5.2.2 Pattern Recognition

The main properties of image moments and their invariants are the ability to describe
uniquely the pixels distribution and the robustness to geometrical and non-geometrical
transformations of the image's content. These two properties make the usage of
moments in pattern recognition and classi�cation applications, where some image
patterns have to be distinguished, an important utility. The application of moment
and moment invariants in pattern recognition origins back to the early works of [60,
28, 1]. Since then, they are applied with remarkable performance on sketched symbol
[58], gait recognition [135], target recognition [84], aircraft recognition [28, 191]iris
recognition [88, 51], hand gesture recognition [123, 4], facial expression recognition
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[75, 66], infrared face recognition [110, 29], human action classi�cation [181], tra�c
sign recognition [30], texture classi�cation [90].

1.5.2.3 Multimedia Watermarking

The introduction of moments and moment invariants in image watermarking was per-
formed by Alghoniemy [3], who used the Hu's moment invariants and an iterative
process in order to hide the watermark into an image. Kim and Lee [72], make a step
forward by using the orthogonal Zernike moments to hide the watermark information,
in order to take advantage of the rotation invariance and reconstruction capabilities of
the radial polynomial basis. A milestone in moment-based watermarking, was the pio-
neering work of Xin et al. [177], which changed the way the watermark is inserted and
extracted. In this approach the dither modulation is applied by adding a �blind� nature
to the whole watermarking procedure since the initial watermark was not necessary
any more.

Among the several moment-based methodologies [158] incorporating moments as
information carriers, new moment families [78, 166, 139, 140, 154, 155], moments
with improved local behavior [185, 26, 118, 119], RST (Rotation, Scale, Translation)
invariance capabilities [198, 195, 166] and robustness to a�ne transformations [192]
have been introduced lately.

The most emerging topics in moment-based watermarking is the application of the
newly proposed quaternion moments as features to hide the watermark information
inside color images [157, 156, 167] and the tackling of watermarking as an adaptive
process [159, 119, 156, 154, 140] where the signi�cance of each moment coe�cient
and the image insertion portion are dynamically decided.

Finally, it should be noted that moments have not been used only in image water-
marking but in video [161] and audio [165]watermarking as well.

1.5.2.4 Image Retrieval

Nowadays, there are massive amounts of image data due to the many camera equipped
devices (computers, mobiles, tablets, etc.) and the unstoppable usage of social me-
dia. This high tra�c and storage of image data assumes the existence of big image
databases, where the task of searching and retrieving images with speci�c attributes
constitutes an every day task for the modern information systems. Therefore, there
are needs for accurate, fast and reliable image retrieval systems. Concerning the Con-
tent Based Image Retrieval (CBIR) scheme, the usage of e�cient image features to
describe the content of the images can ensure a high retrieving performance.

Image moments and moment invariants have been used successfully in CBIR image
retrieval systems for several years [170, 171, 6, 100, 136, 5]. Moments can describe
uniquely the global, as well as the local information [137, 138] of the image's content
and thus can be used to distinguish di�erent images and to provide high matching
rates of the query image.

Although the application of moment functions as features in retrieving images from
a database has been already investigated, there are a lot of new moment families
that are not used for CBIR purposes. Moreover, quaternion moments and moment
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invariants [68, 70] could be promising features to retrieve color images, since they can
enclose all the color information in a single hyper complex quantity.

1.5.2.5 Medical Image Analysis

The application of moment functions in medical image analysis follows almost the same
directions with the conventional image analysis. The orthogonal moments have been
used widely to reconstruct CT images [163, 24] and noisy CT, MRI, X-ray medical
images [57], to describe the texture of a CT liver image [9], while several moment
invariants have been used as discriminative features to detect tumors [63], to predict
protein structures [176], to recognize parasites [27] and spermatogonium [87] and to
segment medical images [91, 37].

The acceptable performance of the moments in medical image analysis justi�es their
ability to describe complex image patterns and generates many expectations for a more
systematic incorporation of the recent advances in moments' theory to medical image
analysis.

1.5.2.6 Forensics

Image moments, as features describing uniquely the content of an image, have found
application to a quite recent topic of information security called image forgery detec-
tion. Moreover, the invariant properties of moments are showing very useful for the
aforementioned task, since they remain unchangeable when common geometric and
non-geometric attacks are applied on the image by any malicious user.

More precisely, the orthogonal moment invariants have been used to detect the copy-
move image forgery [89, 81, 79, 62] according to which a part of an image is copied and
pasted into another place inside the same image, generating duplicate regions. The
radial moment invariants can also handle successfully the copy-rotate-move [129, 128]
image forgery since they are rotation invariant and thus remain una�ected to the
rotation attack.

This research �eld is still unexplored regarding the application of the moments and
their invariants and thus a lot of open issues exist that can be addressed in the future
by taking advantage of the recent achievements in the moments' theory.

1.5.2.7 Miscellaneous

Apart from the above applications of moments and moments invariants, there are
several other disciplines where the moments have little contribution but the promising
results have shown that there is still room for more. Such areas are camera calibration
[77], robot localization [76], visual servoing [14], audio content authentication [86, 85],
music identi�cation [80], spectral analysis [190, 18], strain analysis [164] and many
more.
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1.6 New Horizons

The previous analysis of the most emerging research topics both in theory and appli-
cations of moment functions having attracted the scienti�c interest so far, provides a
measure of the activity taken place in the last the 50 years in the �eld of moments and
moment invariants. However, the aforementioned analysis also sets the current needs
that have to be satis�ed through future research by establishing some new horizons.
Some distinctive directions that can lead to new lands of innovation and can motivate
the early stage as well as the experienced scientists, are presented hereafter.

1.6.1 Local Behavior

Moments and moment invariants, initially were proposed as global image descriptors,
since they are computed over the entire image intensity function. This global encoding
mechanism makes them robust to noisy conditions since the lower order moments
describe the coarse image content, whereas the noise contaminates the image's details.
Moreover, the discrimination power of the moment descriptors is distributed over all
orders and thus the local information of the image is shared to many components,
by making them less e�cient to describe the particular properties of a local image
region. For example, for textured images, where useful information is highly localized,
the global moments are not able to describe the high variability of the texture micro-
structures.
Some attempts to increase the local description capabilities of the moments have

already been reported in the literature for texture classi�cation [90], invariant pattern
recognition [114] and image watermarking [26, 119]. However, we are still far away
from a theoretical framework that de�ne a local information preserving mechanism
during the computation of moment descriptors and more e�orts have to be made.

1.6.2 Combined Invariants

As it has already been discussed in Section 1.5.1.4, the moment invariants constitute
a useful tool in describing the contents of an image despite the presence of some
common geometric and non-geometric deformations. Recently, the embodiment of
multiple invariant properties [146, 197, 193, 16] to the moments have become a hot
research topic. The development of combined moment invariants to rotation, scaling,
translation, blur and a�ne transformations is still in the beginning and deserves the
attention of researchers.
The development of moment invariants robust to multiple geometric and non-

geometric image transformations simultaneously and not partially, would show novel
directions towards the e�cient and uni�ed handling of image deformations.

1.6.3 Selection

One of the most challenging open issue in the theory of moments and moment invari-
ants is the development of an analytical methodology for the selection of the most
appropriate moment set for a speci�c application and image modalities. Currently, a



20 G.A. Papakostas

set of moments up to a certain order is computed and used as image descriptors, a
practice that does not guarantee the highest performance relative to the problem's
objectives. Although, some preliminary approaches [107, 67, 101] have been proposed
in the past, as analyzed in Section 1.5.1.8, they have major shortcomings mainly due
to high computation time.

The ultimate goal towards the rising of this horizon is the development of a moments
and/or moment invariants selection scheme guaranteeing the optimality of the selected
features set subject to a speci�c problem. The development of such a methodology
will boost the performance in all the applications described in the previous sections.

1.6.4 Software Library

An exhaustive search in the web can lead to the conclusion that there is not any soft-
ware package or library in any programming language and environment being dedicated
to moments and moment invariants. The majority of the researchers that propose their
own algorithms and tools, do not give attention in preparing their source codes in a
form suitable to distribute them to the moments community and thus the dissemina-
tion of the �eld is restricted. There is a need to compile a formal and open-source
library in an advanced programming environment (MATLAB, C++, Python, R, etc.)
by incorporating the major achievements in the theory of moments. In this way, it
is strongly believed that the evolution of the �eld will be boosted, new improved al-
gorithms will be generated and all the algorithms would be compared in the same
base.

1.7 Discussion

For the �rst time, this chapter presents a comprehensive study of the research in the
�eld of moments and moment invariants in the last 50 years. The literature analysis
showed the continuously increasing interest in the �eld of moments but most important
that the �eld's activity is at the zenith so far, a conclusion that can enforce the research
in multiple directions.

The previous sections provided an overview of the attainments achieved through the
years in each theoretical aspect of moments and where these achievements have found
application. As an outcome of the point to point description of the past research
actions and considering the current needs of the scienti�c community, new horizons
of research are declared for the future.

This chapter can serve as a guide to the early stage and experienced researchers, who
are interested in focusing their research to the moments' theory and their applications.
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