
CHAPTER 2

Accuracy Analysis of Moment Functions

Simon Liao

Moment methods have been the subject of intensive research since the concept of
image moments was introduced by Hu in 1962 [6]. Di�erent types of conventional
continuous orthogonal moments, de�ned in the rectangular region and circular domain,
have been investigated as the unique image features for applications in �elds of pattern
recognition and image analysis. For a general study of continuous orthogonal moments,
please refer to [11, 12, 4].

In this chapter, we will conduct the accuracy analysis of continuous moment func-
tions de�ned in both the rectangular region and circular domain, analyze the com-
putational errors of those moment functions, and propose solutions to improve the
computing accuracy of moments, especially for the higher order moment functions.
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2.1 Moment Functions De�ned in the Rectangular

Region

The feature representation capability of di�erent types of image moment functions
de�ned in the rectangular regions, such as the Geometric moments, Central moments,
Legendre moments, and Gegenbauer moments has been widely studied and applied
in several areas of computer vision, including image analysis and recognition. The
moment-based image features can capture global properties of an image and represent
it in the moment space uniquely.
In this section, we will focus on some accuracy issues of computing moment functions

de�ned in the rectangular region, and propose some general solutions in order to
achieve more precisely calculated moments.

2.1.1 Accuracy Analysis

The general two-dimensional (p + q)-th continuous moment of an image function
f(x, y) de�ned in the rectangular region, using a moment weighting kernel ψpq(x, y),
is given by

Ψpq =

∫
x

∫
y

ψpq(x, y)f(x, y)dxdy, (2.1)

where p, q = 0, 1, 2, ....
However, for a digital image, the analog image function f(x, y) needs to be digitized

into its discrete version f(xi, yj). Therefore, the double integration in Eq.(2.1) would
have to be approximated by some summation formulas. A commonly used formula is

Ψ̂pq =
∑
x

∑
y

ψpq(xi, yj)f(xi, yj)∆x∆y, (2.2)

where ∆x and ∆y are the sampling intervals in the x and y directions.
If the moment kernel function ψpq(xi, yj) is fairly distributed within each pixel (i, j),

Eq.(2.2) would provide a relatively accurate approximation of Eq.(2.1). However, when
the orders of moment kernel functions increase, in most cases, the distributions within
pixel (i, j) vary signi�cantly.
Figure 2.1 shows the distribution of Legendre polynomials P120(x)P80(y) within a

corner pixel (256, 1). It is obvious that the integration of P120(x)P80(y) in this pixel
is very di�erent from ∆x∆y.
To improve the computational accuracy of moment functions de�ned in the rectan-

gular region, we can rewrite Eq.(2.2) to

Ψ̂pq =
∑
x

∑
y

f(xi, yj)hpq(xi, yj), (2.3)

where

hpq(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

ψ(x, y) dxdy. (2.4)
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Figure 2.1: The distribution of P120(x)P80(y) in a corner pixel, (256, 1), of a 256×256
image.

By using some well-known numerical integration techniques, the double integration
in Eq.(2.4) can be approximated with various accuracies. For example, the alternative
extended Simpson's rule was applied to deal with a similar situation [3, 9]. We can
also apply a straightforward numerical scheme, which divides a pixel into k × k sub
regions that weight the same, to calculate the double integration in Eq.(2.4) with the
substantially improved computational accuracy [19].
In the following subsection, based on our accuracy analysis and the suggested numer-

ical scheme, we will examine the Legendre moment functions de�ned in the rectangular
region.

2.1.2 Legendre Moments

Legendre moment is one of the important continuous orthogonal moments de�ned
in the rectangular region and has been well investigated since the earlier years of
moment-based descriptors studies [16, 17, 9].
The m-th order Legendre polynomial is de�ned by [14]

Pm(x) =
1

2mm!

dm

dxm
(x2 − 1)m, (2.5)

with the recurrent formula

Pm+1(x) =
2m+ 1

m+ 1
xPm(x)− m

m+ 1
Pm−1(x). (2.6)

The Legendre polynomials {Pm(x)} are a complete orthogonal basis set on the
interval [−1, 1] [2]: ∫ +1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn, (2.7)

where δmn is the Kronecker symbol.
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The (m,n)-th order of Legendre moment of an image function f(x, y) is de�ned
on the square [−1, 1]× [−1, 1]

λmn =
(2m+ 1)(2n+ 1)

4

∫ +1

−1

∫ +1

−1
f(x, y)Pm(x)Pn(y) dxdy, (2.8)

where m,n = 0, 1, 2, ....
According to the orthogonality property of the Legendre moments, an original image

function f(x, y) can be reconstructed from an in�nite series of its Legendre moments

f(x, y) =

∞∑
m=0

m∑
n=0

λm−n,n Pm−n(x)Pn(y). (2.9)

In practice, however, if only Legendre moments of order ≤ T are given, the original
image function f(x, y) can only be approximated by a truncated series

f(x, y) ' fT (x, y) =

T∑
m=0

m∑
n=0

λm−n,n Pm−n(x)Pn(y). (2.10)

For a digitalized image, we can only observe an image function f(x, y) at discrete
pixels, so the discrete version of f(x, y) becomes f(xi, yj). Assuming that a digital
image function f(xi, yj) is sized by M × N , referring to Eq.(2.3) and Eq.(2.4), we
can compute the Legendre moments λmn with our proposed numerical scheme

λ̂mn =

M∑
i=1

N∑
j=1

f(xi, yj)hmn(xi, yj), (2.11)

where

hmn(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

Pm(x)Pn(y) dxdy. (2.12)

To verify the more accurately computed Legendre moments, we would examine the
image reconstructions determined by

f̂T (x, y) =

T∑
m=0

m∑
n=0

λ̂m−n,n Pm−n(x)Pn(y), (2.13)

which is a newer version of Eq.(2.10) with the Legendre moments λm−n,n replaced by
their approximations given by Eq.(2.11).
Figure 2.2 shows two testing images utilized in this research. Both of the testing

images are sized by 256× 256 with 256 di�erent gray levels.
To compare the reconstructed images with the original testing image, we have

adopted the Peak Signal to Noise Ratio (PSNR) as the measurement, which is image
independent and can be used to evaluate the reconstruction performance generally.
PSNR is the ratio between the maximum power of the signal and the a�ecting noise,
and is de�ned as
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(a) (b)

Figure 2.2: Two testing images sized by 256× 256 with 256 di�erent gray levels.

PSNR = 10 log10(
G2
Max

MSE
), (2.14)

where GMax is the maximum gray level of the image, which is 255 in our case, and
MSE is the Mean Square Error de�ned by

MSE =
1

MN

M∑
i=1

N∑
j=1

[f(xi, yj)− f̂(xi, yj)]
2. (2.15)

First, we conducted the image reconstructions on Fig.(2.2a) by using di�erent maxi-
mum Legendre moment orders with various k×k numerical schemes. Table 2.1 displays
some PSNR values to measure the reconstruction performances on Fig.(2.2a).

Table 2.1: PSNRs of di�erent k×k numerical schemes for reconstruction performances
on Figure 2.2 (a)

T = 40 T = 80 T = 120 T = 160 T = 200 T = 240
1× 1 21.4604 20.6813 13.6755 12.6527 8.5273 6.3311
3× 3 21.5906 24.0981 25.7981 25.9551 21.8930 21.0419
5× 5 21.5927 24.1444 25.9015 27.2255 27.3102 28.0546
7× 7 21.5929 24.1536 25.9223 27.3241 28.2903 28.8333
9× 9 21.5930 24.1560 25.9419 27.2999 28.5504 29.2834

11× 11 21.5930 24.1569 25.9515 27.3113 28.5163 29.6366

Figure 2.3 demonstrates some images reconstructed from Fig.(2.2a) with various
k × k numerical schemes and di�erent maximum Legendre moment orders. It can be
observed that the images reconstructed from higher orders of Legendre moments with
7× 7, 9× 9, and 11× 11 numerical schemes are very close to the original Fig.(2.2a)
visually.
Figure 2.4 shows some images reconstructed from Fig.(2.2b) with the 11 × 11

numerical scheme from di�erent orders of Legendre moments, while Fig.(2.5) plots
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Figure 2.3: Some reconstructed images from di�erent Legendre moments orders with
various k × k numerical schemes on Fig.(2.2a).
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Figure 2.4: Some reconstructed images from di�erent Legendre moments orders with
11× 11 numerical scheme on Fig.(2.2b).
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Figure 2.5: PSNRs of the reconstruction performances on Fig.(2.2b) with 11 × 11
numerical scheme and di�erent maximum orders of Legendre moments.

the PSNRs of the image reconstruction performances.
While the proposed solutions based on our analysis can improve the accuracy of

computing Legendre moment functions substantially, it should be noted that the com-
puting time of these processes is high. We conducted our experiment on a desktop
computer with 12.0 GB RAM and an i7 - 2600 CPU at 3.40 GHz. For an image sized
by 256× 256, Table 2.2 shows the program running time for computing the Legendre
moments of order 240, with di�erent k × k numerical schemes.

Table 2.2: Computing time of the Legendre moments of order 240 with di�erent k×k
numerical schemes

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11
Hours 5.1502 16.597 38.829 71.597 115.54 170.91

Although only the Legendre moment functions are studied here, the proposed solu-
tion based on our accuracy analysis is expected to increase the computational accuracy
of other conventional continuous moments, de�ned in the rectangular region as well.
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Figure 2.6: Implementing a circularly de�ned function in a Cartesian plane.

2.2 Moments Functions De�ned in a Circular

Domain

Due to several advanced fundamental properties, particularly the distinctive property
of being invariant to rotations and re�ections, the orthogonal moments de�ned on a
circular domain have been the subject of extensive theoretical studies since they were
introduced by Teague in 1980 [16]. In this class of moments, Zernike, pseudo-Zernike,
and Fourier-Mellin moments have been used in numerous important applications in
image analysis and recognition, ophthalmology, optical engineering, watermarking,
and face recognition. However, some technical di�culties related to the computation
of these moments, especially the issues of accuracy and e�ciency, have bottlenecked
the broader usage of this class of moments in applications [13].

2.2.1 Accuracy Analysis

In this subsection, we will examine a couple of important accuracy issues related to
moment functions de�ned in a circular domain.

Geometric Errors

In image processing and analysis, most digital images are obtained by using the Carte-
sian image model, though other models such as the method based on the polar coor-
dinate system [21] have been investigated as well. However, in general, implementing
a set of circularly de�ned moment functions in a Cartesian plane is error prone; es-
pecially, when the computations are related to the pixels along the boundary of unit
circle.

Usually, when computing a circularly de�ned moment function, if the centre of a
pixel falls inside the border of unit circle x2 + y2 ≤ 1, this pixel will be used in the
computation; otherwise, it will be discarded. However, as shown in Fig.(2.6), some
pixels are not entirely inside the unit circle; on the other hand, some of the interior
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circle is not covered by the pixels. Therefore, the area covered by the moment function
computation is not exactly the area of the unit circle.
In the case of most moment functions de�ned in a circular domain, the unit circle is

located in a 2 units × 2 units square which is composed of N ×N pixels. Therefore,
the area of the unit circle is π. If we use T (N) to represent the total number of pixels
whose centres fall inside the unit circle, the summation of the areas of all these pixels
is

Apixels = T (N)
4

N2
. (2.16)

Then, the geometric error between the unit circle and the summation of all the
pixels used in the circularly de�ned moment function computation is

R(N) = T (N)
4

N2
− π. (2.17)

It is crucial to know how fast the geometric error R(N) converges to zero when N
tends to in�nity. In fact, this issue is closely related to a famous problem in analytic
number theory, attributed originally to Gauss and referred to as �The Lattice Points
of a Circle Problem" [8]. Gauss' problem on the number of points inside a circle is to
determine the correct order of magnitude of R(N) as N →∞.
According to the results from [5, 7, 8], the smallest possible order of magnitude of

R(N) is

R(N) = O(N−
3
2 ). (2.18)

This remains an open problem in number theory.
We would refer to the detailed discussion on this issue to [13] and take the conclu-

sion that the geometric error is inherent from implementing circular de�ned moment
functions in a Cartesian plane.

Approximation Error

The general two-dimensional continuous moment function of an image f(x, y) de�ned
in a circular domain, with a moment weighting kernel ψpq(x, y), is given by

Ψpq =

∫∫
x2+y2≤1

ψpq(x, y)f(x, y)dxdy. (2.19)

For digital image processing, when the analog image function f(x, y) is digitized into
its discrete version f(xi, yj), the double integration in Eq.(2.19) must be approximated
by some summation formulas. One of the commonly used formulas is

Ψ̂pq =
∑∑
x2
i+y

2
j≤1

ψpq(xi, yj)f(xi, yj)∆x∆y, (2.20)

where ∆x and ∆y are the sampling intervals in the x and y directions.
If the distribution of the moment kernel function ψpq(xi, yj) is fairly smooth within

each pixel (i, j), Eq.(2.20) would provide a relatively justi�ed approximation of Eq.(2.19).
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Figure 2.7: (a) The distribution of Zernike polynomial V100,70(x, y) within the pixel
located at (5, 63); (b) The distribution of pseudo-Zernike polynomial
V100,70(x, y) within the pixel located at (5, 63).

However, for most cases, the distribution within pixel (i, j) vary signi�cantly when the
orders of moment kernel functions increase.
Figure 2.7 shows two examples of the distributions of two moment weighting kernel

functions, Zernike polynomial V100,70(x, y) and pseudo-Zernike polynomial V100,70(x, y),
within a pixel located at (5, 63) of an image sized at 128 × 128. It is obvious that
when the order of a kernel function rises, the accuracy of using ∆x∆y to approximate
the double integrations in Eq.(2.19) will decrease.
To improve the computational accuracy of moment functions de�ned in a circular

domain, we rewrite Eq.(2.20) to

Ψ̂pq =
∑∑
x2
i+y

2
j≤1

f(xi, yj)hpq(xi, yj), (2.21)

where

hpq(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

ψ(x, y)dxdy. (2.22)

Then the issue turns into how to compute the double integration in Eq.(2.22) more
accurately. Some two-dimensional numerical integration techniques can be applied
to improve the accuracy of the double integrations, such as N-dimensional cubature
formulas [10].
An e�cient and straightforward numerical scheme is to divide a pixel into k×k sub

regions with the same weights [19]. By averaging the values of all sub regions, we can
considerably increase the computational accuracy.
It should be noted that if the moment kernel function ψpq(x, y) is de�ned in the

unit circle x2 + y2 ≤ 1, we need to discard all pixels that have any sub region falling
outside the unit circle.
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In the following subsections, based on our accuracy analysis, we will examine some
moment functions de�ned in a circular domain.

2.2.2 Zernike Moments

The utilization of Zernike moments in the �elds of image analysis and recognition was
pioneered by Teague in 1980 [16].
A set of complex orthogonal functions de�ned over the unit disk was introduced by

Zernike in 1934 [18]. The (p, q)-th order of Zernike function is de�ned as

Vpq(x, y) = Rpq(ρ)exp(jqθ), x2 + y2 ≤ 1, (2.23)

where ρ =
√
x2 + y2 is the length of the vector from the origin to the pixel (x, y),

and θ = arctan(y/x) is the angle between the vector and the x axis. The real-valued
radial polynomial Rpq(ρ) is de�ned as [17]

Rpq(ρ) =

(p−|q|)/2∑
s=0

(−1)s
(p− s)!

s!
(
p+|q|

2 − s
)

!
(
p−|q|

2 − s
)

!
ρp−2s, (2.24)

where p − |q| is an even number, and the integer q takes positive, negative, or zero
values, and satis�es

|q| ≤ p. (2.25)

The radial polynomial Rpq(ρ) is an orthogonal polynomial satisfying∫ 1

0

Rpl(ρ)Rql(ρ)ρdρ =
1

2(p+ 1)
δpq , (2.26)

which leads to the orthogonality relation for {Vpq(x, y)} in the two-dimensional circular
domain [10] ∫∫

x2+y2≤1

V ∗pq(x, y)Vp′q′(x, y)dxdy =
π

p+ 1
δpp′δqq′ , (2.27)

where δpp′ = 1 if p = p′, and 0 otherwise.
The Zernike moment of order p with repetition q is de�ned as

Apq =

∫∫
x2+y2≤1

f(x, y)V ∗pq(x, y)dxdy , (2.28)

where ∗ denotes complex conjugate.
The fundamental feature of the Zernike moments is their rotational invariance. If

an image f(x, y) is rotated by an angle α counterclockwise, then the Zernike moment

A
(α)
pq of the rotated image is given by

A(α)
pq = Apqe

−jqα , (2.29)
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Figure 2.8: The original testing image is sized by 128× 128 with 256 gray levels.

which leads to

|A(α)
pq | = |Apq| . (2.30)

Thus, the magnitudes of the Zernike moments can be used as rotationally invari-
ant image features. It should be noted, however, for digital images, the invariance
properties of some Zernike moments are not perfectly valid [20].
To compute the Zernike moments Apq in a Cartesian plane, referring to Eq.(2.21)

and Eq.(2.22), we have the formula

Âpq =
∑∑
x2
i+y

2
j≤1

f(xi, yj)hpq(xi, yj), (2.31)

where

hpq(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

V ∗pq(x, y)dxdy. (2.32)

The completeness and orthogonality of the Zernike function set {Vpq(x, y)} allow
us to represent an image function f(x, y) by its Zernike moments

f(x, y) =

∞∑
p=0

p∑
q=−p

p+ 1

π
ApqVpq(x, y) , (2.33)

where (p+ 1)/π is the normalizing constant. In practice, however, Eq.(2.33) needs to
be approximated with a �nite set of Zernike moments in a Cartesian plane

f̂(xi, yj) =

T∑
p=0

p∑
q=−p

p+ 1

π
ÂpqVpq(xi, yj) , (2.34)

where T is the truncation parameter indicating how many moments are taken into
account [10].
To verify our proposed scheme for more accurate circularly de�ned moment func-

tions, we would examine the image reconstruction from Zernike moments determined
by Eq.(2.34). We have used a 128 × 128 image with 256 gray levels as our testing
image, which is shown in Fig.(2.8).
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Figure 2.9 shows some reconstructed images by using di�erent truncation parameters
and k schemes, and Table 2.3 displays the PSNR values to measure the qualities of
those reconstructed images.

Table 2.3: PSNRs of di�erent k×k numerical schemes for reconstruction performances
on Fig.(2.8) from Zernike moments

k = 1 k = 3 k = 5 k = 7
T = 20 21.330 21.169 21.172 21.172
T = 40 23.177 23.688 23.678 23.674
T = 60 23.772 25.516 25.542 25.544
T = 80 22.282 27.291 27.374 27.388
T = 100 21.580 28.902 29.043 29.055
T = 120 19.681 30.104 30.747 30.716

It can be observed that the images reconstructed from higher orders of Zernike
moments with 5×5 and 7×7 numerical schemes visually are very close to the original
testing image shown in Fig.(2.8).

2.2.3 pseudo-Zernike Moments

A modi�ed version of Zernike functions, which is the so-called pseudo-Zernike func-
tions, was derived by Bhatia and Wolf in [1]. This set of polynomials is di�erent from
that of Zernike and the real-valued radial polynomials Rnm(ρ) are de�ned as

Rnm(ρ) =

n−|m|∑
s=0

(−1)s(2n+ 1− s)!ρn−s

s!(n+ |m|+ 1− s)!(n− |m| − s)!
, (2.35)

where n = 0, 1, 2, ...,∞, and m is restricted to |m| ≤ n only.
Compared to the Zernike polynomials, the set of pseudo-Zernike polynomials con-

tains (n+1)2 linearly independent polynomials of degree ≤ n, while the set of Zernike
polynomials contains only 1

2 (n+ 1)(n+ 2) linearly independent polynomials of degree
≤ n [17].
The pseudo-Zernike moment of order n with repetition m is de�ned as

Anm =

∫∫
x2+y2≤1

f(x, y)V ∗nm(x, y)dxdy . (2.36)

The pseudo-Zernike moments are rotational invariant as well. If an image f(x, y)
is rotated α degrees counterclockwise, the pseudo-Zernike moments of the resulting
image are

A(α)
nm = Anme

−jqα . (2.37)

This leads to
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Figure 2.9: Reconstructed images from Zernike moments with di�erent T values and
k schemes.
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|A(α)
nm| = |Anm| , (2.38)

which indicates that the magnitudes of the pseudo-Zernike moments are rotationally
invariant.

To compute the pseudo-Zernike moments Anm in a Cartesian plane, referring to
Eq.(2.21) and Eq.(2.22), we apply the formula

Ânm =
∑∑
x2
i+y

2
j≤1

f(xi, yj)hnm(xi, yj), (2.39)

where

hnm(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

V ∗nm(x, y)dxdy. (2.40)

Due to the orthogonality of the pseudo-Zernike functions, we can represent an image
function f(x, y) by its pseudo-Zernike moments

f(x, y) =

∞∑
p=0

p∑
q=−p

p+ 1

π
AnmVnm(x, y) . (2.41)

To reconstruct the image function f(x, y) with a �nite set of its pseudo-Zernike
moments in a Cartesian plane, Eq.(2.41) can be approximated by

f̂(xi, yj) =

T∑
p=0

p∑
q=−p

p+ 1

π
ÂnmVnm(xi, yj) , (2.42)

where Ânm is de�ned in Eq.(2.39), and T is the truncation parameter deciding the
number of pseudo-Zernike moments which are taken into account for image recon-
struction.

To validate the proposed scheme for computing the pseudo-Zernike moment func-
tions, we have conducted the image reconstructions from pseudo-Zernike moments
by applying Eq.(2.42). The same testing image shown in Fig.(2.8) is utilized in this
investigation.

Figure 2.10 represents some reconstructed images from the pseudo-Zernike moments
with di�erent truncation parameters and k schemes. Table 2.4 displays the PSNR
values to measure the quality of those reconstructed images.

Comparing the results shown in Fig.(2.10) and Table 2.4 with those of Fig.(2.9) and
Table 2.3, it is noticeable that the images reconstruction performances of the higher
orders of pseudo-Zernike moments are superior to Zernike moments. This can be
explained by the fact that the set of pseudo-Zernike polynomials contains about twice
as many linearly independent polynomials of the same degree as the set of Zernike
polynomials does.
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Figure 2.10: Reconstructed images from pseudo-Zernike moments with di�erent T
values and k schemes.
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Table 2.4: PSNRs of di�erent k×k numerical schemes for reconstruction performances
on Fig.(2.8) from pseudo-Zernike moments

k = 1 k = 3 k = 5 k = 7
T = 20 22.693 22.599 22.588 22.585
T = 40 24.273 25.476 25.468 25.468
T = 60 22.980 27.796 27.882 27.893
T = 80 22.238 29.780 29.888 29.902
T = 100 21.092 31.025 31.213 31.231
T = 120 20.275 31.893 31.997 32.029

2.2.4 Orthogonal Fourier-Mellin moments

Sheng and Shen introduced orthogonal Fourier-Mellin moments in 1994 [15]. The
orthogonal Fourier-Mellin moments are de�ned in a polar coordinate system over the
interior of the unit circle

Φnm =
1

2παn

∫ 2π

0

∫ 1

0

f(r, θ)Qn(r)exp(−jmθ)rdrdθ, (2.43)

where f(r, θ) is an image function, the circular harmonic order m = 0,±1,±2, ...,
and

αn =
1

2(n+ 1)
(2.44)

is a normalization constant. The polynomials Qn(r) are

Qn(r) =

n∑
s=0

αnsr
s, (2.45)

where

αns = (−1)n+s
(n+ s+ 1)!

(n− s)!s!(s+ 1)!
(2.46)

are called coe�cients of the nth polynomial with n starting from zero.
Since the set of Qn(r) is orthogonal over the range 0 ≤ r ≤ 1∫ 1

0

Qn(r)Qk(r)rdr = αnδnk, (2.47)

where δnk is the Kronecker symbol, the basis functions Qn(r)exp(−jmθ) in Eq.(2.43)
are orthogonal over the unit circle.
To compute the orthogonal Fourier-Mellin moments Φnm in a Cartesian plane,

referring to Eq.(2.21) and Eq.(2.22), we have

Φ̂nm =
n+ 1

π

∑∑
x2
i+y

2
j≤1

f(xi, yj)hnm(xi, yj), (2.48)
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(a) (b)

Figure 2.11: The testing images are sized by 256× 256 with 256 gray levels.

where

hnm(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

Qn(r)exp(−jmθ)dxdy. (2.49)

The orthogonality of the set Qn(r)exp(−jmθ) allows us to reconstruct an image
function de�ned in the unit circle by the inverse orthogonal Fourier-Mellin transform

f(r, θ) =

∞∑
n=0

∞∑
m=−∞

ΦnmQn(r)exp(jmθ). (2.50)

In practice, with a �nite set of orthogonal Fourier-Mellin moments Φnm computed
in a Cartesian plane, an approximate version of f(r, θ), f̂(r, θ), can be obtained by

f̂(r, θ) =

Nmax∑
n=0

Mmax∑
m=−Mmax

Φ̂nmQn(r)exp(jmθ), (2.51)

where −Mmax ≤ m ≤Mmax and 0 ≤ n ≤ Nmax.
To attest our scheme to compute the orthogonal Fourier-Mellin moments, we have

conducted the image reconstructions on two 256 × 256 images with 256 gray levels,
which are shown in Fig.(2.11a) and (2.11b).

Figure 2.12 represents some reconstructed Fig.(2.11a) images from the orthogonal
Fourier-Mellin moments with the same order n = m = 220 and di�erent k×k schemes.
Visually, as shown in Fig.(2.12), the improvements on the reconstructed images are
substantial as k increases.

Table 2.5 displays the PSNR values of some reconstructed images with di�erent
orders and numerical schemes.

A collection of reconstructed Fig.(2.11a) images, with the same numerical integra-
tion scheme k = 15 and di�erent maximum radial and harmonic orders, is displayed
in Fig.(2.13).
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a b c

d e f

Figure 2.12: Sub-�gures (a) to (e) are the reconstructed images from orders n = m =
220 with the numerical integration scheme of k = 1, 3, 7, 11, and 15,
respectively. The sub-�gure (f) shows the original image for comparison.

Table 2.5: Some PSNR values of reconstructed images with di�erent numerical k× k
schemes

Order(n = m) 10 45 80 115 150 185 220

1× 1 21.291 23.357 23.093 21.399 19.166 17.044 15.052
3× 3 21.295 23.733 25.186 26.380 27.463 27.847 27.535
7× 7 21.295 23.763 25.308 26.779 28.352 30.053 31.883

11× 11 21.295 23.767 25.317 26.801 28.461 30.327 32.489
15× 15 21.295 23.766 25.323 26.803 28.473 30.352 32.710

By using the testing image Fig.(2.11b), we have conducted some image reconstruc-
tions with di�erent maximum radial and harmonic orders. The results are shown in
Fig.(2.14).

The top three images in the right column of Fig.(2.14) illustrate that the radial
patterns are better reconstructed as the value of harmonic order m increases. From
the bottom three images in the left column, however, we can observe that the harmonic
patterns are better reconstructed when the radial order n increases.

Based on the above observations, we conclude that the radial order n and har-
monic order m of the orthogonal Fourier-Mellin moments preserve image information
in di�erent orientations. More speci�cally, the harmonic order m of the orthogonal
Fourier-Mellin moments contain more information on radial patterns, while the radial
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810, 20< 870, 20< 8130, 20< 8190, 20< 8220, 20<

810, 60< 870, 60< 8130, 60< 8190, 60< 8220, 60<

810, 100< 870, 100< 8130, 100< 8190, 100< 8220, 100<

810, 140< 870, 140< 8130, 140< 8190, 140< 8220, 140<

810, 180< 870, 180< 8130, 180< 8190, 180< 8220, 180<

810, 220< 870, 220< 8130, 220< 8190, 220< 8220, 220<

Figure 2.13: Reconstructed images from applying the numerical integration scheme
k = 15 with di�erent maximum radial and harmonic orders.
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820, 20< 820, 80<

880, 20< 820, 140<

8140, 20< 820, 200<

8200, 20< 8200, 200<

Figure 2.14: Some reconstructed images with di�erent {n,m}.
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order n of the orthogonal Fourier-Mellin moments hold more information on harmonic
patterns.

2.3 Concluding Remarks

In this chapter, we have analyzed the general computational errors of moment functions
de�ned in both the rectangular region and circular domain. We have also proposed
some algorithms and techniques to improve the accuracy of moment computing, es-
pecially for the higher order of moment functions. To demonstrate the more precisely
computed di�erent types of conventional continuous orthogonal moments de�ned in
both the rectangular region and circular domain, the image reconstructions from dif-
ferent types of conventional continuous orthogonal moment functions are examined
with satis�ed performances.

Based on our accuracy analysis of moment functions and the proposed solutions,
we expect that further progress will be made in the research of various types of con-
ventional continuous moments, de�ned in both the rectangular region and circular
domain.
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