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We give a general framework of statistical aspects of the problem of understanding
and a description of image symmetries, by utilizing the theory of moment invariants.
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4.1 Introduction

Symmetry plays an important role in signal and image understanding, compression,
recognition and human perception [18]. In fact, symmetric patterns are common in
nature and in man-made objects thus estimation and detection of image symmetries
can be useful for designing e�cient algorithms for object recognition, robotic manip-
ulation, image animation, and image compression [11]. Though symmetry can be
discussed from di�erent point of views, in this chapter statistical aspects of spatial
symmetry are examined and reviewed. We are aiming at the fundamental problems
of estimating symmetry parameters like the angle of the axis of mirror symmetry and
detection of symmetry type.
For objects represented by a function f that belongs to the space F one can de�ne a
symmetry class on F as follows

S = {f ∈ F : f = τθf, θ ∈ Θ}, (4.1)

where τθ is mapping τθ : F → F that represents the transformed version of f . The
mapping τθ is parametrized by θ ∈ Θ, where typically Θ is a compact subset of Rp.
Hence, the class S is a subset of F de�ning all objects from F that are symmetric
with respect to the class of operations {τθ} parametrized by θ ∈ Θ .
In the concrete situation of image analysis an object f is identi�ed with the grey-

level bivariate image function f(x, y). In this case there are two basic symmetry types,
i.e., mirror (re�ection) and rotational symmetries. In the former case there is an axis
of symmetry that divides the image into two identical re�ected images. Formally, the
image reveals the mirror symmetry if it belongs to the following class

Sm = {f ∈ F : f(x, y) = τmθ f(x, y), θ ∈ Θ}, (4.2)

where
τmθ f(x, y) = f(x cos(2θ) + y sin(2θ), x sin(2θ)− y cos(2θ))

is the re�ection of the image f(x, y) with respect to the axis of symmetry de�ned by
the angle θ ∈ Θ ⊂ [0, π). In rotation symmetry there is a single rotation point such
that the image rotated about this point by a fraction (degree) of a full cycle aligns
with the original image. The corresponding rotation symmetry class Sr is de�ned as
in (4.2) with the rotation transformation through the angle θ de�ned as

τ rθ f(x, y) = f(x cos(θ) + y sin(θ),−x sin(θ) + y cos(θ)).

The rotation angle θ takes commonly the form θ = 2π/d, where d is an integer called
the rotation degree and the corresponding class Sr is referred to as the d-fold rotation
symmetry class.
It is also convenient to express the above symmetry constrains in terms of polar co-

ordinates. Hence, let f(ρ, ϕ) be the version of the image function in polar coordinates.
Then, the mapping in (4.2) is given by

τmθ f(ρ, ϕ) = f(ρ, 2θ − ϕ) (4.3)

with the corresponding symmetry requirement f(ρ, ϕ) = f(ρ, 2θ − ϕ) for some angle
θ. Common mirror symmetry classes are: vertical symmetry (θ = π/2), horizontal
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symmetry (θ = 0), and diagonal symmetry (θ = π/4). Analogously, the d-fold rotation
class in polar coordinates is de�ned by the mapping

τ rθ f(ρ, ϕ) = f(ρ, ϕ− 2π/d) (4.4)

and the corresponding symmetry requirement f(ρ, ϕ) = f(ρ, ϕ − 2π/d) for some
degree d. There are a few important values of d: d = 2 gives the rotation class by π,
d = 4 de�nes the rotation class by π/2. The limit value d =∞ corresponds to radial
images, i.e., when f(ρ, ϕ) = g(ρ) is a function of the radius ρ only for some univariate
function g.
The aforementioned transformations can be combined to de�ne joint symmetries.

For example, one can consider a joint symmetry with respect to the horizontal and
vertical transformations. We can easily verify that τmπ/2τ

m
0 f = τ rπf and τ rπτ

m
π/2f

= τm0 f . Hence, the symmetry group generated by {τm0 , τmπ/2} is identical to that

generated by {τmπ/2, τ
r
π}. Thus, one can consider the symmetry class generated jointly

by the vertical re�ection τmπ/2 and the 2-fold rotation τ rπ . Generally, a symmetry group

generated by two re�ections can always be generated by a re�ection and a rotation.
In real-world applications we do not have a complete information about the image

function f and one must verify the question whether f reveals some type of symmetry
observing only its discrete and noisy version. In fact, in image processing systems one
needs to address the following fundamental issues:

1. Detection of the type of symmetry present in the original unobserved image.

2. Estimating the parameters characterizing the given type of symmetry, i.e., the
angle of mirror symmetry and the degree of rotational symmetry.

Moreover, we need to estimate the location of symmetry axis and the point of rotation.
These problems, however, can be easily resolved by a proper image normalization.
Throughout this chapter, we assume that these points are located in the coordinate
system origin being the image center of inertia.
In this chapter, we assume that the only information we have about the original

image function is its noisy and digitized version. Hence, suppose we have discrete
noisy image data observed over the region D

Zi,j = f(xi, yj) + εi,j , (xi, yj) ∈ D, 1 ≤ i, j ≤ n, (4.5)

where the noise process {εi,j} is a random sequence with zero mean and �nite variance
σ2
ε . The data are observed on a symmetric square grid of edge width ∆, i.e., xi−xi−1 =
yi − yi−1 = ∆ and (xi, yj) is the center of the pixel (i, j). Note that ∆ is of order
1/n and the image size is n2.
We may believe that hidden in the noisy data {Zi,j , 1 ≤ i, j ≤ n} our image exhibits

the one of the aforementioned symmetry type τθ0 for some θ0 ∈ Θ. Thus, we wish to
detect the symmetry type τ and estimate the corresponding true symmetry parameter
θ0 from {Zi,j , 1 ≤ i, j ≤ n}. The statistical nature of the observed image data and
the lack of any a priori knowledge of the shape of the underlying image f(x, y) call for
formal nonparametric statistical methods for joint estimating and testing the existing
symmetry in an image function.
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To appreciate the di�culty of the posed problem we display in Fig.(4.1) the discrete
and noisy image that represents the true mirror symmetric image f(x, y) (shown on the
left-hand-side) observed over the rectangular region with the resolution n×n = 30×30.
The problem of detection and estimation of the existing symmetry in f(x, y) based
merely on {Zi,j} is clearly challenging.

(a) (b)

Figure 4.1: (a) The original mirror symmetric image f(x, y). (b) The discrete and
noisy version {Zi,j} of the image in (a).

Some preliminary studies examining statistical aspects of symmetry estimation and
detection have been initiated in [2, 3, 4, 16]. In this chapter, we propose a systematic
and rigorous statistical approach for joint estimating and testing of the aforementioned
image symmetries. To do so, we use the orthogonal moments image representation
utilizing the theory of radial functions expansions [16, 20]. In particular, we select
the speci�c radial basis commonly referred to as Zernike functions [1]. The Zernike
functions de�ne an orthogonal and rotationally invariant basis of radial functions on the
unit disk. As such, the Zernike functions and their corresponding Fourier coe�cients
(moments) have been extensively used in pattern analysis [10, 17, 16, 20].
Our estimation and test statistics are constructed by expressing the symmetry con-

dition in terms of restrictions on radial moments. The estimation procedure is based
on minimizing over θ ∈ Θ the L2 distance between empirical versions of f and τθf
de�ning the aforementioned symmetry classes. Hence, f and τθf are estimated using
truncated radial series with empirically determined Fourier coe�cients. The inherent
symmetry property of radial moments results in a particularly simple procedure for
estimating θ.
The aforementioned estimation problem is closely connected to the problem of sym-

metry detection based also on the concept of the L2 minimum distance principle.
Hence, we wish to verify the following null hypothesis

H0 : f = τθ0f (4.6)

for some θ0 ∈ Θ, against the alternative

Ha : f 6= τθf (4.7)



Moment Invariants for Image Symmetry Estimation and Detection 95

for all θ ∈ Θ, where τθ is one of the above discussed symmetry classes. For a such
formulated symmetry testing problem we propose detection statistics for which we
establish asymptotic distributions, both under the null hypothesis of symmetry as well
as under �xed alternatives. These results allow us to construct practical tests for
the lack of symmetry and evaluate the corresponding power. Our results model the
performance of our estimates and tests on the grid which becomes increasingly �ne,
i.e., when ∆→ 0.
The chapter is organized as follows. In Section 4.2 we introduce our basic math-

ematical tools for representing the image symmetries in terms of radial moments.
Section 4.3 is dealing with the symmetry estimation problem, whereas Section 4.4
examines the issue of symmetry detection.

4.2 Radial Moments and Image Symmetries

The symmetry constrains introduced in the previous section are convenient to express
in some transform domain where we can parametrize the symmetry concept and to
form estimates for symmetry detection and recovery. Let us begin with the classical
geometric moments of the so-called complex form (complex moments) [7, 15]. Hence,
let

Cpq(f) =

¨
D

zpz∗qf(x, y)dxdy,

be the (p, q)-order complex moment of f , where z = x + jy and z∗ = x − jy is the
conjugate of z. In polar coordinates Cpq(f) can be expressed as

Cpq(f) =

ˆ R

0

ˆ 2π

0

ρp+qej(p−q)ϕf(ρ, ϕ)ρdρdϕ,

where R de�nes the range of the image domain D. Let us now express the symmetry
conditions in terms of Cpq(f). Owing to the above representation of Cpq(f) in terms
of polar coordinates and Eq.(4.3) we can readily obtain that the complex moment of
the image re�ected by the axis tilted by the angle θ takes the following form

Cpq(τ
m
θ f) = ej(p−q)2θC∗pq(f).

The mirror symmetry condition implies that we must have

ej(p−q)2θC∗pq(f) = Cpq(f). (4.8)

This equation puts some constrains on the admissible set of {Cpq(f)} for which
Eq.(4.8) holds. In fact, we can readily derive that if Cpq(f) 6= 0 then Eq.(4.8) is
equivalent to

arg(Cpq(f)) = (p− q)θ,
where arg(Cpq(f)) is the phase of Cpq(f). In particular, for the horizontal re�ection
this implies that Cpq(f) must be real, whereas for the vertical re�ection we must have
that arg(Cpq(f)) = (p− q)π/2. Analogously by making use of Eq.(4.4) the complex
moment of the image rotated by the angle θ we obtain

Cpq(τ
r
θ f) = ej(p−q)θCpq(f).
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This yields that for the image exhibiting the d-fold rotation symmetry we have

ej(p−q)2π/dCpq(f) = Cpq(f). (4.9)

This equation holds if we either have the constrain that (p − q)/d is an integer or
that Cpq(f) = 0. All the aforementioned formulas reveal that the classical complex
moments must meet some restrictive constrains on (p, q) in order to capture the
symmetry property of the image. Moreover, complex moments are not orthogonal and
as such they exhibit some information redundancy and inability to uniquely recover the
image function from imprecise data as in the noise model de�ned in Eq.(4.5). There
is also little known about the accuracy of computing Cpq(f) from digital and noisy
data.
The function space F representing all images can be selected as L2(D) - the space

of square integrable functions de�ned on a compact subset D of R2. This function
class allows us to represent images in terms of the orthogonal expansions of radial
functions. It is also important to use the representation that can easily incorporate
symmetry properties of the image. In [1] it is shown that a basis that is invariant in
form for any rotation of axes must be of the form

Vpq(x, y) = Rp(ρ)ejqϕ, (4.10)

where the right-hand-side is expressed in polar coordinates (ρ, ϕ). Here, Rp(ρ) is a
radial orthogonal polynomial of degree p and q de�nes the angular order. There are
various ways of selecting Rp(ρ) and important examples are Fourier-Mellin, pseudo-
Zernike and Zernike radial bases [7, 17, 16, 20]. Among the possible choices for Rp(ρ)
there is only one orthogonal set, the set of Zernike functions, for which Rp(ρ) = Rpq(ρ)
is the radial orthogonal polynomial of degree p ≥ |q| such that p−|q| is even [1]. Hence,
the Zernike polynomial Rpq(ρ) has no powers of ρ lower than |q|. In this chapter,
without loss of generality, we con�ne our derivations and results to the Zernike basis.
Analogous discussion can be carried out to other radial orthogonal basis.
An image function f ∈ L2(D) can be represented by the N th-term expansion with

respect to the given radial basis {Vpq(x, y)}

fN (x, y) =

N∑
p=0

p∑
q=−p

λ−1
p Apq(f)Vpq(x, y), (4.11)

where λp = ‖Vpq‖2= 2π‖Rpq‖2 is the normalizing constant and ‖ · ‖ denotes the
L2 norm. In the case of Zernike polynomials we have ‖Rpq‖2 = 1/2(p + 1) yielding
λp = π/(p+1). Furthermore, the summation in Eq.(4.11) is taken with respect to the
admissible pairs (p, q), i.e., p ≥ |q| and p − |q| is even. Moreover, the image domain
D is the unit disk. Then, the radial Zernike moment Apq(f) of the image f is de�ned
as follows

Apq(f) =

¨
D

f(x, y)V ∗pq(x, y) dx dy.

It is also very useful to express Apq(f) in polar coordinates

Apq(f) =

ˆ 2π

0

ˆ 1

0

f(ρ, ϕ)e−jqϕRpq(ρ) ρ dρdϕ. (4.12)
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For future developments we need an expression on the L2 distance between two images
that can be expressed in terms of Zernike moments. Recalling Parseval's formula we
have

‖f − g‖2 =

∞∑
p=0

λ−1
p

p∑
q=−p

|Apq(f)−Apq(g)|2. (4.13)

In the following we shall work with an estimated version of the Zernike moments,
since the only knowledge about the image function f is given by the data set {Zi,j}
generated according to the model in Eq.(4.5). Hence, consider the weights

wpq(xi, yj) =

¨
Πij

V ∗pq(x, y) dxdy, (4.14)

where Πij =
[
xi − ∆

2 , xi + ∆
2

]
×
[
yj − ∆

2 , yj + ∆
2

]
denotes the pixel centered at

(xi, yj). Consequently, the Zernike moment Apq(f) is estimated by

Âpq =
∑

(xi,yj)∈D

wpq(xi, yj)Zi,j , (4.15)

where the weights are given by Eq.(4.14). A simple approximation for wpq(xi, yj) is
given by ∆2V ∗pq(xi, yj), see [10, 17, 16] for higher order approximation schemes. The

estimate Âpq is a consistent estimate of the true Apq. In fact, the bias E{Âpq} =

Apq + O(∆) for a large class of image functions, whereas the variance V ar{Âpq}
is of order σ2

ε
π
p+1∆2. As a result, we have that Âpq tends (in probability sense) to

Apq as ∆ → 0. Hence, for high resolution images the invariant property of Apq
discussed below is approximately satis�ed by Âpq. It is also worth mentioning that
along the boundary of the disk, some pixels are included and some are excluded. When
reconstructing f from {Âpq} this gives rise to an additional error called geometric error.
This will be quanti�ed in our considerations by the factor γ < 1.5, see [10, 17, 16] for
a discussion of this important problem.
As a result, an estimate of the image function f(x, y) from {Âpq} is given by

f̂N (x, y) =

N∑
p=0

p∑
q=−p

λ−1
p ÂpqVpq(x, y), (4.16)

where N is a smoothing parameter which determines the number of terms in the
truncated Zernike series. It was shown in [10, 17, 16] that the mean integrated

square reconstruction error MISE(f̂N ) = E
˜
D
|f̂N (x, y) − f(x, y)|2dxdy satis�es

the property
MISE(f̂N∗) = O(∆2/3) (4.17)

provided that the truncation parameter N is selected optimally as N∗ = a∆−2/3 some
constant a. Other choices of N leads to slower decay of the error as ∆ gets smaller,
i.e., when the image resolution increases.
The fundamental property of radial moments and Zernike moments in particular

is the easiness to embed the basic symmetry transformations into the radial moment
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formula in Eq.(4.12). In fact, recalling the symmetry mappings de�ned in Eq.(4.3)
and Eq.(4.4) and the formula in Eq.(4.12) we can obtain the following relationships

Apq(τ
m
θ f) = e−2jqθA∗pq(f) (4.18)

and
Apq(τ

r
θ f) = e−jqθApq(f) (4.19)

for mirror and rotation symmetry mappings, respectively. The symmetry conditions
can be now easily expressed in terms of Apq(f). Hence, the image f exhibits the
mirror symmetry if

e−2jqθA∗pq(f) = Apq(f) (4.20)

for some θ ∈ [0, π). Next, we say that the image f exhibits the d-fold rotation
symmetry if

e−jq2π/dApq(f) = Apq(f) (4.21)

for some integer d. The above formulas put some constrains on the admissible set of
Zernike moments. Hence, Eq.(4.20) holds if Apq(f) 6= 0 and moreover, we have

arg(Apq(f)) = −qθ. (4.22)

In particular, this implies that the horizontal mirror symmetry takes place if Apq(f) is
real. On the other hand, Eq.(4.21) is satis�ed if q/d is an integer or if Apq(f) = 0.
The important di�erence between these restrictions and the ones established for com-
plex moments is that the symmetry invariance conditions of radial moments in�uence
only the angular order q de�ning the Zernike moments {Apq(f)}. Furthermore, the or-
thogonality property of Zernike functions allows us to group moments such that we are
able to uniquely characterize the symmetry conditions in Eq.(4.20) and Eq.(4.21) and
in the same time to recover the image. The conditions for the symmetry uniqueness
of {Apq(f)} is described in Theorem 1 below.
Our strategy for both symmetry estimation and detection begins with forming the

expansion as in Eq.(4.11) for both the original image f and its version obtained by the
symmetry mapping τθf . These two representations are then compared by L2 distance
and then the use of Eq.(4.13) giving the following contrast function

MN (θ) = ‖fN − τθfN‖2 =

N∑
p=0

λ−1
p

p∑
q=−p

|Apq(f)−Apq(τθf)|2. (4.23)

It is clear that if f is symmetric with respect to the unique value θ = θ0 corresponding
to the symmetry mapping τθf then we have that MN (θ0) = 0 for all N . It is im-
portant to verify whether MN (θ) = 0 uniquely determines θ0. The following theorem
gives a positive answer to this question.

Theorem 1. Let f ∈ L2(D) be symmetric with respect to unique θ0 corresponding
to the symmetry mapping τθf . Then for su�ciently large N , θ0 is the unique zero of
MN (θ) if MN (θ) contains nonzero Ap1,q1 , . . . , Apr,qr such that pi ≤ N , i = 1, . . . , r
and

gcd(q1, . . . , qr) = 1, (4.24)
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where gcd(q1, . . . , qr) stands for the greatest common divisor of qk's.

Proof : Let us sketch the proof of this theorem in the case of mirror symmetry, i.e.,
where the mapping in Eq.(4.18) takes place. Then note that for θ ∈ [0, π) we have

|Apq(f)−Apq(τmθ f)|2 = 2|Apq(f)|2 (1− cos(2rpq(f) + 2qθ)) ,

where rpq(f) is the phase of Apq(f). This characterizes the true value θ0 as

rpq(f) + qθ0 = lπ (4.25)

for any integer l and all q with Apq 6= 0. Next for any such Apq we recall that Apq
is invariant for any rotation by an angle φ = 2π/q and its integer multiples. Hence,
for any integer m > 1 such that q divides m we also have that Apq is invariant by
rotation by 2π/m. Therefore, the gcd of all q with Apq 6= 0 must be equal one. Hence,
suppose that

Ap1q1 6= 0, . . . , Aprqr 6= 0

with gcd(q1, . . . , qr) = 1 and pi ≤ N , i = 1, . . . , r. Then, there are integers a1, . . . , ar
such that

a1q1 + . . .+ arqr = 1. (4.26)

By Eq.(4.25), if θ̄ is a zero of MN (θ), then

rpiqi(f) + qiθ̄ = lilπ (4.27)

for some integer li, i = 1, . . . , r. By this and Eq.(4.26) it follows that

θ̄ = −
r∑
i=1

airpiqi(f) + l̄π,

where l̄ =
∑r
i=1 aili. Hence, the zero of MN (θ) is uniquely determined and must be

equal to θ0. The proof of Theorem 1 has been completed. �

Hence, in practice one has to choose N large enough such that the sum de�ning
MN (θ) contains nonzero Apq's for which the condition given in Theorem 1 on the
angular repetition q holds. Figure 4.2 illustrates the result described in Theorem 1
for an image being mirror symmetric with respect to θ0 = π. The contrast function
MN (θ) is depicted utilizing the terms with q1 = 1, q2 = 3 and q1 = 3, q2 = 9. The
unique global minimum of MN (θ) at θ0 in the former case is clearly seen. This is not
the case in the latter case.
The contrast function de�ned in Eq.(4.23) cannot be evaluated since we can only use

the estimated Zernike moments de�ned in Eq.(4.15). Hence, the empirical counterpart
of MN (θ) can be de�ned as follows

M̂N (θ) =

N∑
p=0

λ−1
p

p∑
q=−p

|Âpq(f)− Âpq(τθf)|2. (4.28)
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Figure 4.2: (a) The true contrast function MN (θ) utilizing the Zernike moments with
q1 = 1, q2 = 3. (b) The true contrast functionMN (θ) utilizing the Zernike
moments q1 = 3, q2 = 9.

This in the mirror symmetry case takes the following form

M̂N (θ) =

N∑
p=0

λ−1
p

p∑
q=−p

|Âpq − e−2jqθÂ∗pq|2, (4.29)

where the summation in the above formula is taken with respect to those (p, q) that

meet the conditions of Theorem 1. The estimate Âpq is de�ned in Eq.(4.15) and Â∗pq
is its conjugate version. We show in this chapter that even for noisy images we need
to estimate a few Zernike moments to properly identify symmetry parameters.

A number of ad hoc algorithms have been proposed for automatic estimation, de-
tection and classi�cation of image symmetries [6, 8, 9, 12, 13, 14]. The comprehensive
summary of these methods is given in [11]. Most of the known symmetry detectors
assume the access to clean images and they utilize the image variability extracted
from the derivative of the image function. To our best knowledge there has not been
a rigorous theory conducted for symmetry estimation and detection from noisy and
discrete data.

4.3 Symmetry Estimation

Our approach to symmetry estimation is based on the minimum distance principle
utilizing the L2 distance expressed in terms of Zernike moments. Hence, due to Par-
seval's formula this is represented by the score function in Eq.(4.28) for the particular

symmetry class τθ. Specialized this to the mirror symmetry we should take M̂N (θ)
de�ned in Eq.(4.29) into account. Our basic assumption is that the image f is invari-
ant under some unique symmetry τθ0 , i.e., θ0 represents the unknown true symmetry
parameter. Thus, our estimate of θ0 is de�ned as

θ̂∆,N = arg min
θ
M̂N (θ),
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where we write θ̂∆,N to emphasize the dependence of the estimate on the image reso-
lution ∆ and the number of Zernike moments N used to obtain the estimate. For such
de�ned estimate we obtain results that characterize the statistical accuracy of θ̂∆,N .

This includes the rate at which θ̂∆,N tends to θ0 and the limit law. The following
theorems are specialized to the mirror symmetry parameter estimate that minimizes
the score function de�ned in Eq.(4.29) with respect to θ ∈ [0, π).

Theorem 2. Suppose that an image function f is of bounded variation on D. Then
for su�ciently large N such that the identi�ability condition in Eq.(4.24) holds we
have

θ̂∆,N = θ0 +OP (∆),

where OP (·) stands for the convergence in probability.

The obtained rate is the optimal one as it is known [19] that the best rate for parame-
ter estimation is the square root of the sample size. This is the case here since ∆ is of
order 1/n and n2 is the sample size. Also it is worth noting that our situation does not
belong to the standard parameter estimation problem as we estimate θ0 without any
knowledge of the underlying image f(x, y). Such problems are referred to as semi-
parametric, see [19] for the basic theory of semiparametric inference. Furthermore,
the selection of N is not critical as we only need N that should de�ne the uniqueness
property described in Theorem 1. This should be contrasted with the choice of N for
image reconstruction, see Eq.(4.16) and Eq.(4.17).

Next, we establish asymptotic normality for θ̂∆,N . This requires a more restrictive
class of image functions.

Theorem 3. Let the conditions of Theorem 2 be satis�ed. Suppose that f is Lipschitz
continuous. Then, we have

∆−1(θ̂∆,N − θ0)
L→ N

(
0,

8σ2
ε

M
(2)
N (θ0)

)
,

where

M
(2)
N (θ0) = 8

N∑
p=0

λ−1
p

∑
|q|≤p

q2|Apq|2 (4.30)

is the second derivative of MN (θ) at θ = θ0 and N (0, σ2) denotes the normal law
with mean zero and variance σ2.

The proofs of Theorem 2 and Theorem 3 can be derived from the results established
in [3, 4].

Theorem 3 can be used to construct a con�dence interval for θ0. To this end, we
need an estimate of the asymptotic variance in the above normal limit. First, we can

estimateM
(2)
N (θ0) directly by using Eq.(4.30) simply by replacing Apq(f) by Âpq. Call
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this estimate M̂
(2)
N . Further, we can estimate the noise variance σ2

ε by

σ̂2
ε =

1

C(∆)

∑
(xi,yj)∈D

1

4

((
Zi,j − Zi+1,j

)2
+
(
Zi,j − Zi,j+1

)2)
, (4.31)

where the sum is taken over all (xi, yj) ∈ D such that (xi+1, yj) ∈ D and (xi, yj+1) ∈
D, and C(∆) is the number of terms in this restricted sum. One can show that if f is
Lipschitz continuous, then σ̂2

ε − σ2
ε = OP

(
∆
)
. Using these estimates, we obtain the

following con�dence interval with nominal level α for θ0[
θ̂∆,N − q1−α ·

2
√

2σ̂ε∆

(M̂
(2)
N )1/2

, θ̂∆,N + q1−α ·
2
√

2σ̂ε∆

(M̂
(2)
N )1/2

]
, (4.32)

where q1−α is the 1− α-quantile of the standard normal distribution.

Remark 1. If in Theorem 3 we only assume that the image f is a function of bounded
variation, then the bias is also of order ∆, and we get an asymptotic o�set, i.e., the
limiting normal law with non-zero mean.

Remark 2. If the image f is not re�ection invariant, the estimator θ̂∆,N may still
converge to a certain parameter value θ∗, which is determined by minimizing the
L2-distance ‖f − τmθ f‖2. Then f̃ = (f + τmθ∗f)/2 is the best re�ection-symmetric ap-
proximation (in the L2 sense) to the original image f . The following empirical version
of f̃

f̃N (x, y) =
f̂N (x, y) + τm

θ̂∆,N
f̂N (x, y)

2

can serve as an estimate of the optimal symmetric version of f . Furthermore, the dis-
tance ‖f̂N − f̃N‖ can be used to form an empirical measure of the degree of symmetry
of non-symmetric f .

Remark 3. Suppose that f is re�ection invariant but is also invariant under some
rotation. If f is rotationally invariant, then there will be a minimal angle α = 2π/d
for some integer d, under which f is rotationally invariant. If we use the estimator
θ̂∆,N in such a situation, then one re�ection axis will be between 0 and α, and we

should use the minimizer of M̂N (θ) in the interval [0, α) rather than in [0, π).

To illustrate the above asymptotic theory let us consider a simple example. Figure
4.3a shows the noisy version of the mirror symmetric image of the resolution 50× 50.
In Fig.(4.3b) the true contrast functions MN (θ) and its estimate M̂N (θ) for N = 7

are depicted. A global minimum of M̂N (θ) de�nes the estimate θ̂∆,N .
Figure 4.4a shows the noisy version of the image being not re�ection symmetric.

In Fig.(4.4b) the contrast functions MN (θ) and M̂N (θ) for N = 7 are depicted. The

minimum of M̂N (θ) gives the re�ection axis angle θ̂∆,N that de�nes an estimate of
the best symmetric approximation of the image. This optimal symmetric image is
estimated by (f̂N + τm

θ̂∆,N
f̂N )/2 and is shown in Fig.(4.4c), see Remark 2. In turn, in
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(a)

M
N
(θ
)

θ

(b)

Figure 4.3: (a) Re�ection symmetric noisy image, (b) The contrast functions MN (θ)

(solid curve) and M̂N (θ) (dashed line) for N = 7.

Fig.(4.5) we show the true (in black) and estimated (in red) axes of mirror symmetry
of the image depicted in Fig.(4.1).

(a)

θ

M
N
(θ
)

(b) (c)

Figure 4.4: (a) A noisy image that is not re�ection symmetric, (b) The contrast func-

tions MN (θ) (solid curve) and M̂N (θ) (dashed line) for N = 7, (c) An
estimate of the best symmetric approximation of the image.

4.4 Symmetry Detection

The aforementioned estimation problem assumes that the image f is invariant under
some unique known symmetry, i.e., that there is θ0 ∈ Θ such that f = τθ0f . In the
detection problem our goal is to test the hypothesis on the symmetry class, i.e., we
wish to verify

H0 : f = τθ0f (4.33)

for some θ0 ∈ Θ, against the alternative

Ha : f 6= τθf (4.34)
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Figure 4.5: The true (in black) and estimated (in red) axes of mirror symmetry of the
image depicted in Fig.(4.1)

for all θ ∈ Θ. The test statistic for verifying H0 is based again on the concept of the
L2 minimum distance principle and has the generic form

TN (∆) =‖ f̂N − τθ̂∆,N
f̂N ‖2, (4.35)

where θ̂∆,N is the above introduced estimate obtained under the null hypothesis H0.

The minimum distance property of θ̂∆,N suggests the alternative form of TN , i.e.,

TN (∆) = min
θ∈Θ
‖ f̂N − τθf̂N ‖2 . (4.36)

This statistic only needs the numerical minimization with respect to a single variable
θ. The examined detectors are of the form: reject H0 if TN (∆) > c, where c is a
constant controlling the false rejection rate.
Let us begin with the problem of testing the hypothesis of mirror symmetry. Since

the minimum L2-distance approach is invariant for the true value of the re�ection angle
θ0 we may consider, without loss of generality, the vertical re�ection τmπ/2f(x, y) =

f(−x, y). We will denote this symmetry brie�y as τf = f . In view of Eq.(4.18)
we have Apq(τf) = (−1)|q|A∗pq(f). Now consider the hypothesis that f is invariant
under τ , i.e., H0 : f = τf which can be expressed in terms of Zernike coe�cients as
Apq(f) = (−1)|q|A∗pq(f). Hence, due to Parseval's formula the test statistic de�ned
in Eq.(4.35) is given by

TN (∆) =

N∑
p=0

p∑
q=−p

λ−1
p

∣∣Âpq − (−1)|q|Â∗pq
∣∣2.

The following result presents the limit law for statistic TN (∆) under the hypothesis H0

as well as under �xed alternatives. Let C2(D) denote a class of functions possessing
two continuous derivatives on D.
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Theorem 4. Under the hypothesis H0 : f = τf , if ∆ → 0, N → ∞ such that
∆N7 → 0, we have

TN (∆)− σ2
ε∆2a(N)

∆2
√
a(N)

L→ N (0, 8σ4
ε), (4.37)

where a(N) = (N + 1)(N + 2).
Under a �xed alternative Ha : f 6= τf , suppose that f ∈ C2(D). If ∆N5 → ∞ and
N3/2∆γ−1 → 0, where γ = 285/208 controls the geometric error [17], we have

∆−1
(
TN (∆)− ‖f − τf‖2

) L→ N (0, 16σ2
ε‖f − τf‖2). (4.38)

It is worth noting that di�erent rates appear under the hypothesis (fast rate) in
Eq.(4.37) and under �xed alternatives (slow rate) in Eq.(4.38). This takes place since
TN (∆) is (under the hypothesis) a quadratic statistic [5], but under a �xed alternative
an additional linear term arises which dominates the asymptotic. Theorem 4 can be
used to construct an asymptotic level α test for verifying the hypothesis H0. Indeed,
�xing the Type I detection probability P{TN (∆) > c|H0} to the value α yields the
following asymptotic choice of the control limit c

cα = 2q1−α∆2
√

2a(N)σ̂2
ε + ∆2a(N)σ̂2

ε ,

where σ̂2
ε is an estimate of σ2

ε , see Eq.(4.31) and the truncation parameter N can be
speci�ed as N = ∆−α, where 0 < α < 1/7. Hence, H0 is rejected if TN (∆) > cα.
The result of Theorem 4 also reveals that under the alternative

TN (∆)→‖ f − τf ‖2 (P ) (4.39)

as ∆→ 0. Consequently, we readily obtain that N5∆TN (∆)→∞ (P ) which implies
the following consistency result.

Theorem 5. Let Ha : f 6= τf for f ∈ C2(D) hold. If ∆N5 →∞ and N3/2∆γ−1 →
0, then as ∆→ 0

P
{
N5∆TN (∆) > c|Ha

}
→ 1 (4.40)

for any positive constant c > 0.

Hence, the properly normalized decision statistic TN (∆) leads to the testing technique
that is able to detect that the null hypothesis is false with the probability approaching
to one, i.e., the power of the test tends to one.
Furthermore, let us note that contrary to the symmetry estimation problem the

symmetry detection requires the optimal choice of the truncation parameter N . The
condition ∆N7 → 0, used under the hypothesis, is rather restrictive, and is due to the
only approximate orthogonality of the discretized Zernike polynomials. This condition
can be relaxed if we assume a more accurate orthogonal design. In fact, if we have
exact discrete orthogonality, then ∆N2 → 0 is su�cient for Eq.(4.37) to hold. Under
a �xed alternative, the condition N3/2∆γ−1 → 0 is equivalent to N4+β∆ → 0,
β = 0.0519 . . ., so that this condition and N5∆→∞ can be ful�lled simultaneously.
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Analogous derivations can be carried out for testing d-fold rotation symmetry. Ex-
plicit results can be obtained for d = 2 and d = 4. The remaining cases need some
interpolation procedures since the discrete grid points {(xi, yj)} are no longer invariant
under τ r2π/d for arbitrary value of d.

To illustrate this case let us consider an example of the 2-fold rotation symmetric
image f1 shown in Fig.(4.6) (top row). The second row in Fig.(4.6) depicts the

reconstruction f̂N and the corresponding error image f̂N − f1. The reconstruction
f̂N here is based on the complete Zernike function expansion that ignores the fact
that the image was detected to be symmetric. On the other hand, the third row in
Fig.(4.6) shows the reconstruction f̂rN and the error f̂rN − f1 that takes into account
the existing symmetry of f1. In fact, under the 2-fold rotation symmetry we have
that the Zernike moments Apq = 0 for all q being odd. Hence, the reconstruction

f̂rN shown in the third row of Fig.(4.6) is using only Zernike functions with even q. It
is seen that both reconstructions reveal comparable errors, with the preferable visual
quality of the symmetry preserving reconstruction f̂rN .

Analogous experiments have been repeated for the not 2-fold rotation symmetric
image f2 depicted in the top panel of Fig.(4.7). The second row of Fig.(4.7) shows

the full Zernike function reconstruction f̂N and the corresponding error image f̂N −
f2. On the other hand, the third row in Fig.(4.7) shows the reconstruction f̂rN and

the error f̂rN − f2 that falsely assumes that f2 is 2-fold rotation symmetric. The
dramatic increase of the reconstruction error is clearly seen. Hence, either accepting
or rejecting the hypothesis of the image symmetry has an important in�uence on its
visual perception and recognition.

The case d = ∞ (testing radiality) is of special interest and can be examined
by observing that if the image f is radial, i.e., f(ρ, ϕ) = g(ρ), then we have that
Apq(f) = 0 for all q 6= 0. Moreover,

Ap0(f) = 2π

ˆ 1

0

g(ρ)Pp/2(2ρ2 − 1)ρdρ,

where Ps(x) is the Legendre polynomial of order s. This allows us to form the ap-
propriate nonparametric test for the image radiality with the power tending to one as
∆→ 0, see [16].

It is rare in practise to pose a null hypothesis that the veri�ed not observed image is
exactly symmetric. Thus, the exact symmetry hypothesis is replaced by the following
approximate symmetry requirement

Hδ
0 : ‖f − τθ0f‖ ≤ δ (4.41)

with the alternative hypothesis as

Hδ
a : ‖f − τθ0f‖ > δ, (4.42)

where δ is the assumed degree of image symmetry. This type of hypothesis can be
incorporated into our previous scheme by rejecting Hδ

0 if TN (∆)− δ > cα.
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Figure 4.6: The 2-fold rotation symmetric image f1 (top panel). The full Zernike

function reconstruction f̂N and the error image f̂N − f1 (second panel).

The reconstruction f̂rN and the error f̂rN − f1 that takes into account the
existing symmetry of f1 (third panel).
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Figure 4.7: The image f2 that is not 2-fold rotation symmetric (top panel). The full

Zernike function reconstruction f̂N and the error image f̂N − f2 (second

panel). The reconstruction f̂rN and the error f̂rN − f2 that uses the sym-
metry assumption (third panel).
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4.5 Concluding Remarks

In this chapter, we give the uni�ed minimum L2-distance radial moments based ap-
proach for statistical assessing the image symmetry. The problem of symmetry esti-
mation can be regarded as a semiparametric estimation problem, with θ as the target
parameter, and the image function as a nonparametric nuisance component [19]. Fur-
ther results may include the statistical assessment of imperfect symmetries, symmetries
that only hold locally and detection and estimation of joint symmetries. In particular,
the problem of detection and estimation of symmetry for blurred images is of the great
interest, i.e., when the observation model in Eq.(4.5) is replaced by

Zi,j =

¨
D

K(xi − x, yj − y)f(x, y)dxdy + εi,j ,

where K(x, y) is the point-spread function of the given imaging system. Such a case
plays important role in confocal microscopy and medical imaging [3, 4].
Further extensions may also include 3-D imaging where a number of basic symmetry

classes is much larger than in the 2-D case.
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