
CHAPTER 6

Local Tchebichef Moments for Texture Analysis

Ramakrishnan Mukundan

Orthogonal moment functions based on Tchebichef polynomials have found several
applications in the �eld of image analysis because of their superior feature represen-
tation capabilities. Local features represented by such moments could also be used in
the design of e�cient texture descriptors. This chapter introduces a novel method of
constructing feature vectors from orthonormal Tchebichef moments evaluated on 5×5
neighborhoods of pixels, and encoding the texture information as a Lehmer code that
represents the relative strengths of the evaluated moments. The features will be re-
ferred to as Local Tchebichef Moments (LTMs). The encoding scheme provides a byte
value for each pixel, and generates a gray-level �LTM-image� of the input image. The
histogram of the LTM-image is then used as the texture descriptor for classi�cation.
The theoretical framework as well as the implementation aspects of the descriptor are
discussed in detail.
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6.1 Introduction

Moment functions with discrete orthogonal kernels are designed primarily with the aim
of deriving improved feature representation capability in pattern analysis applications.
When compared with geometric and other types of non-orthogonal moments, discrete
orthogonal moments are generally less susceptible to noise and numerical instabilities.
While it is theoretically possible to construct moment functions using any class of
discrete orthogonal polynomials, we often give importance to simplicity of algebraic
structures and the availability of recurrence equations that can be easily implemented.
In this context, Tchebichef polynomials have the advantage of being orthogonal func-
tions of unit weight over an integral domain, and having a simple recurrence formula
for polynomial computation [6, 22]. Since their introduction in 2001, Tchebichef mo-
ments [16, 14] have found several applications in the �eld of image analysis because
of their straightforward de�nition that allows the computation of orthogonal moments
directly in the image coordinate space. Further research in this �eld has led to the
development of more general classes of moments such as the Hahn moments [27]
and Krawtchouk moments [26]. Discrete orthogonal moments have also been used
in image watermarking [20], face recognition [24], and audio signal compression [8].
Very recently, some research work towards the use of Tchebichef moments for texture
classi�cation has been reported [12]. In all these applications, moments are primarily
used as global features for representing, recognizing or reconstructing shapes present
in the image.

Textures form a special class of images where the shapes present in the images have
a high degree of randomness or irregular structures. We cannot therefore use global
features that are generally suitable for representing only well-de�ned and deterministic
spatial attributes. For processing textures, we require quantitative measures derived
from the spatial arrangement of intensities and any statistical properties they may have.
Local features that are obtained using neighborhood operations around each pixel are
commonly employed to characterize these variations in the intensity distribution, and
for classifying the overall shape features present in images in a statistical sense. The
downside of pixel-level processing is that it generates a large amount of per-pixel
data with several repetitions or similarities. Hence, the features are usually combined
together using their statistical or fractal properties to get a much smaller number
of feature descriptors that are both signi�cant and meaningful [13]. Such feature
representation methods are commonly used for texture classi�cation, segmentation,
and identi�cation of regions of interest [17, 28, 5].

Texture analysis methods play a very important role in the �eld of medical image
analysis. Texture characteristics can be e�ectively used in discriminating between
pathological and normal cases in tissue images and retinal images [9]. Studies have
revealed that local intensity operations and related texture features can be used in the
analysis of pulmonary emphysema and other disease patterns in lung images [23]. We
review some of the commonly used texture analysis methods in the next section.

This chapter introduces Local Tchebichef Moments (LTM) and the associated meth-
ods for developing e�cient texture feature descriptors. Moment computation is per-
formed in 5 × 5 pixel neighborhoods, so that su�cient information about the local
intensity distribution could be captured in a small moment set. Pre-computed con-
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Figure 6.1: A small tissue image database consisting of six di�erent classes of tissue
samples.

volution masks are used to evaluate the LTMs. The algorithm presented here uses a
novel approach of encoding the information about the relative magnitudes of moments
in a byte value, producing a gray level map (called the �LTM image�) of the input, and
also a texture descriptor in the form of a histogram. The complete framework of this
method and its experimental evaluation using a tissue image database are presented.
The book chapter is organized as follows. Section 6.2 gives a general overview of the
method and compares it with similar approaches that use neighborhood operations and
encoding of the resulting information. The computation of orthonormal Tchebichef
polynomials using recurrence relations, their general properties and the computation
of LTMs using convolution masks are given in Section 6.3. LTM descriptors are intro-
duced in Section 6.4. Section 6.5 gives an example of application of these descriptors
in texture classi�cation. Section 6.6 summarizes the main concepts presented in this
chapter and also outlines future work.

6.2 Texture Feature Descriptors

Irregularity and randomness are the primary shape characteristics seen in most tex-
tures. Several types of biomedical images such as tissue microarray images, ultrasound
images, high resolution computed tomography (HRCT) images, and digital microscopy
images of biopsy samples contain texture-like features at various resolutions. Such fea-
tures can be used for classifying images based on tissue type, prevalence of disease,
or other cytological properties. As an example, a collection of tissue images grouped
into six di�erent classes (Adrenal, Cervix, Duodenum, Muscle, Placenta and Tonsil) is
shown in Fig.(6.1). We shall use this image database later to test the e�ectiveness of
our feature descriptors in classi�cation.
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Figure 6.2: An overview of the computation of multifractal spectrum of an image.

The shape features of non-uniform structures present in texture images can be
captured through carefully designed quantitative measures which are then combined
to form a descriptor using reduction techniques or transformations that retain the
essential discriminating statistical features. Several approaches have been used in
obtaining such descriptors; an excellent introduction to these methods can be found in
[17, 28, 5, 13]. A very popular method is the energy approach developed by Laws [11]
that uses nine 3× 3 convolution masks, and the energy information obtained through
the nine channels are combined to form a reduced descriptor for the texture classi�er.
Another approach for texture interpretation uses the statistical self-similarity properties
in textures [4]. A texture image could also be viewed as a superposition of several
fractal structures. Multifractal analysis methods decompose an image into a set of
disjoint �alfa-images� where each image represents a collection of pixels whose local
neighborhoods have similar variation of intensity measure, satisfying the same power
law as the window size is increased. The rate at which an intensity measure scales
with respect to window size is represented by the Holder exponent (α). The fractal
dimensions of the α-images collectively form the multi-fractal spectrum and is used as
the main descriptor for texture classi�cation [15, 21]. Figure 6.2 shows the main steps
involved in the computation of the multi-fractal spectrum. Multifractal methods can
be augmented with multi-scale techniques for improving the discriminating power of
the extracted features [25].

Another powerful texture descriptor that has been successfully applied in classi�-
cation is called the Local Binary Pattern (LBP) [17, 19]. This feature is derived by
comparing the intensity at each pixel with its eight neighbors and encoding the infor-
mation in an 8-bit integer value. This encoding can be viewed as a transformation of
the input image into an LBP image as shown in Fig.(6.3). The histogram of the LBP
image is used for texture classi�cation. LBP methods have been successfully used in
the analysis of disease patterns in HRCT lung images [23].

The method based on local Tchebichef moments presented in this chapter is in-
spired by Laws' approach. It uses 5× 5 convolution masks obtained using Tchebichef
polynomials of degree 0 through 4, providing �ve local Tchebichef moments (LTMs)
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Figure 6.3: An overview of texture processing using the LBP operator.

Figure 6.4: A schematic showing di�erent stages of LTM image computation.

for each pixel neighborhood. These moments are then sorted in ascending order, and
a unique index denoting the order of moments is computed based on Lehmer code
[1]. Since there are 120 possible permutations of �ve LTMs, the Lehmer code assigns
a value between 0 and 119. This value is then multiplied by 2 to get a result in the
range 0 to 238. The relative strengths of the �ve LTMs at each pixel are thus encoded
into a single byte value. The collection of byte values gives a gray-level �LTM image�.
The histogram values of the LTM image are then used in the classi�er. Note that
this stage is similar to that used in LBP images. Figure 6.4 gives a schematic of the
whole process. The various steps involved in the process are described in detail in the
following sections. The next section describes the computation of masks for obtaining
local Tchebichef moments.

6.3 Local Tchebichef Moments

We use orthonormal Tchebichef polynomials [16] for computing the elements of the
convolution masks which give us the associated local moments. We denote orthonor-
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mal Tchebichef polynomials of degree n by tn (x). The polynomials satisfy the follow-
ing recurrence relation [14]:

tn (x) = α1xtn−1 (x) + α2tn−1 (x) + α3tn−2 (x) , (6.1)

with x = 0, 1, ..., N − 1, n = 2, ..., N − 1 and

α1 =
2

n

√
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,
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n
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,

α3 = − (n− 1)
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2
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(6.2)

The starting values for the above recurrence can be obtained from the following
equations:

t0 (x) =
1√
N
,

t1 (x) = (2x+ 1−N)

√
3

N (N2 − 1)

. (6.3)

Orthonormal functions have nearly uniform range of values for di�erent values of
n. Plots showing variations of tn (x) for di�erent values of x and n, with N = 5 are
shown in Fig.(6.5).
We can now de�ne elements of 5× 5 convolution masks Mmn as :

Mmn (x, y) = tm (x) tn (y) , m, n, x, y = 0, ..., 4. (6.4)

The values of some of the masks are given as examples in Fig.(6.6) below:
The convolution of a 5 × 5 neighborhood of a pixel at (x, y) with a mask Mmn

directly gives the corresponding local Tchebichef moment (LTM) at location (x, y):

Tmn (x, y) =

4∑
i=0

4∑
j=0

Mmn (i, j) f (x+ i− 2, y + j − 2) , m, n = 0, ..., 4. (6.5)

where f (x, y) denotes the image intensity values. We will not compute all 25 di�erent
moment terms given by Eq.(6.5). We will select only a few of the LTMs to represent
the local intensity variations and form a feature vector using them as detailed in the
next section.

6.4 LTM Descriptor

We construct a feature vector consisting of �ve elements Γ (x, y) = {Li (x, y) : i = 0, ..., 4},
where each Li is a local Tchebichef moment:
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Figure 6.5: Plots of orthonormal Tchebichef polynomials tn (x) for n = 0 to 4, and
N = 5.

Li (x, y) = Tmn (x, y) for some m, n ∈ [0, 4] , i = 0, ..., 4. (6.6)

We can further generalize the above de�nition allowing for weighted linear combi-
nations of LTMs. For example, we could de�ne our feature vector as

Γ (x, y) = {w0T00 (x, y) , w1T10 (x, y) , w2T01 (x, y) , w3T22 (x, y) , w4T44 (x, y)}
(6.7)

or something like

Γ (x, y) ={w0 (T00 (x, y) + T01 (x, y)) , w1 (T21 (x, y) + T12 (x, y)) ,

w2T11 (x, y) , w3T32 (x, y) , w4T33 (x, y)},
(6.8)

where wis are positive weights chosen to give a nearly equal range of variation for all
Lis. In the most general form, we can write

Li (x, y) =
∑
k

(Tmn)k wk, m, n ∈ [0, 4] , i = 0, ..., 4, wk > 0, ∀k. (6.9)

Even though the �ve elements of the LTM feature vector can be selected to provide
us enough information about the distribution of intensities and their local frequency
components, we do not require their actual numerical values. We would like to further
encode the information in a single value that uniquely represents the relative strengths
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Figure 6.6: A set of 5×5 masks constructed using orthonormal Tchebichef polynomials.
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Figure 6.7: An example showing the computation of Lehmer code for a 5 × 5 neigh-
borhood window.

(or �energies�) of the LTM features. Towards this end, we sort the values of Li in as-
cending order, giving a permutation of Γ (x, y). Since there are 5! = 120 permutations
possible, we can assign an integer value between 0 and 119 to Γ (x, y) depending on
the sequence in which Lis appear in the sorted order. This integer value is computed
using Lehmer code, and is denoted by c (x, y). Figure 6.7 shows the computation of
c (x, y) using an example. Note that this type of encoding is sensitive to minor varia-
tions in the numerical values that impact the sorted positions of Li. As an example,
for a constant image a few of the LTMs are meant to be 0s but their values may
actually be stored as 1.7E − 15, 0.1E − 16 etc. These small numerical values will
completely alter the sorted order and the �nal result. One straightforward way to solve
this problem is to convert the �oating point values of Li to nearest integers before
sorting them.

When applying 3× 3 convolution masks, we typically remove the border pixels from
the computation as they do not have proper 3 × 3 neighborhoods. In our case, we
use 5× 5 masks and therefore leave out points on a two-pixel wide border around the
image. The e�ect of this will be seen as a black border of the LTM image and a spike
at value 0 in its histogram. This problem also can be easily solved by using periodic
boundaries (or circular convolution).

We further multiply the computed Lehmer code at each pixel by 2 to expand the
range to [0, 238], and store the number as a byte value corresponding to the location
(x, y). The gray-level image thus obtained is the map of the input image under the
LTM operator, and will be called the �LTM image�. Figure 6.8 shows the mapping for
a sample image using the feature vector and weights shown in Fig.(6.7). The images
produced by the Local Binary Pattern (LBP) algorithm [17, 19] and the multifrac-
tal analysis method along with their respective feature descriptors are also shown in
Fig.(6.8) for comparison.

The histogram of the LTM image will serve as the main descriptor for our classi�ca-
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Figure 6.8: A sample image and its LTM-image. For comparison, the LBP image and
respective histograms are also shown.
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Figure 6.9: Comparison of LTM image histograms for two choices of the feature vector.

tion. In the next section, we will look at the relevant properties or shape attributes of
the histogram that can provide su�cient inter-class separability needed for generating
accurate results.

It should be noted that the shape of the histogram depends heavily on the choice of
moment terms in the feature vector and the corresponding weights. For example, the
concentration of points towards the right side of the histogram in Fig.(6.8), shows that
the low order moments still dominate the feature set (see Fig.(6.7)). The moment
term T00 usually gives a much larger value compared to other terms and therefore was
assigned a small weight. If we remove T00 from the feature vector and give uniform
weights for all moment terms, then we get a better spread of histogram values as
shown in Fig.(6.9). There is always a trade-o� between the two choices; on one hand
we can have more distinguishing features in the descriptor if the histogram has more
values, but on the other hand less number of signi�cant points in the histogram often
implies less redundant information in a compact set and therefore faster comparison.

6.5 Texture Classi�cation

In this section, we consider the problem of texture classi�cation using LTM descriptors.
We �rst look at intra-class similarity and inter-class variance of the feature descriptors
provided by the LTM histogram. The tissue image database shown in Fig.(6.1) will be
used for our analysis. Three images from each class in Fig.(6.1) were randomly selected
to form the �training set�. The feature vector and weights as given in Fig.(6.7) were
used for obtaining the LTM images. The LTM histograms of the complete training
set are shown in Fig.(6.10).

The histograms given in Fig.(6.10) show excellent intra-class similarity. This is
one of the most desirable features of texture descriptors. Some samples in the test
data set do not show signi�cant inter-class di�erences (eg., Test Data 2 of classes
1 and 3 look very similar) and the corresponding tissue images do not have many
statistically separable features. Images belonging to classes 4 and 6 are distinctly
di�erent from those belonging to other classes, and this aspect is clearly re�ected in
the LTM histograms. However, Class 4 is characterized by the fact that the histogram
values vary largely within the class leading to classi�cation errors.

As a brute-force method of classi�cation, the average of histogram values HE (i)
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Figure 6.10: LTM image histograms for the test cases from the tissue image database.

obtained from the three images in the training data set were computed for each class,
and compared with the LTM histograms HT (i) of all test images in Fig.(6.1) using
the normalized sum of absolute di�erences as the similarity measure:

D1 (HT , HE) =

238∑
i=128

(
|HT (i)−HE (i)|

HE (i)

)
. (6.10)

The standard Chi-square test [7, 10] is also found to yield good results in histogram
comparison:

D2 (HT , HE) =

238∑
i=128

(
(HT (i)−HE (i))

2

HE (i)

)
. (6.11)

Since the histograms contain signi�cant values only on the right half in all cases, only
values in the range [128, 238] were used in the comparison (this range will of course
depend on the choice of the feature vector as shown in Fig.(6.9)). The classi�cation
results obtained using this method are given as a confusion matrix in Table 6.1 below.
The above results compare well with the previously published classi�cation errors for

the same database using multifractal measures [15]. The approach taken in that paper
used features extracted from the multifractal spectrum of the images as opposed to
LTM histograms. For the purpose of comparison, the table given in Fig.(8b) of [15]
that gave the best results, is reproduced below (Table 6.2).
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Table 6.1: The confusion matrix showing the results of the classi�cation experiment
using the tissue database in Fig.(6.1), and LTM image histograms as feature
descriptors.

Table 6.2: The confusion matrix showing the results of the classi�cation experiment
using the tissue database in Fig.(6.1), and features based on multifractal
spectra [15].
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The results given in Table 6.1 could be further improved by carefully selecting the
LTMs in the feature vector using a rigorous analysis of the intensity moments for
the given dataset (domain knowledge), and using robust similarity measures [2] for
obtaining accurate histogram matching. Biomedical image classi�cation algorithms
often use more advanced classi�ers such as K-nearest neighbors and support vector
machines [3], that could also provide better results. The primary aim of this book
chapter was to introduce the framework for local Tchebichef moments, and therefore
detailed optimization aspects have been left out.

6.6 Summary

A feature set constructed using discrete orthogonal moments based on Tchebichef
polynomials can e�ectively represent the intensity distribution within an image win-
dow. This property is utilized in developing a local moment operator that provides
a feature vector at each pixel location. Such operators can be easily implemented
as convolution masks designed for a reasonably sized pixel neighborhood. For tex-
ture analysis applications, the local Tchebichef moments can be combined into a byte
value by using Lehmer codes for the sorted permutation of the feature vector. The
byte values de�ne a mapping of the input image to the LTM-image. The histogram of
this image can then be used as the feature descriptor. This book chapter provided the
framework for this novel algorithm, and also presented experimental results showing
the potential of the method in applications such as texture feature representation and
classi�cation.
Future research work using LTM descriptors can take several directions. One could

analyse the properties of the computed features in moment space to determine the
optimal set and weights (Eq.(6.9)) that should be used as the feature vector for a
given application. This research can be combined with an analysis of the primary
features that should be selected from the LTM histogram for classi�cation. Another
aspect that needs to be considered, specially for texture recognition applications, is
the invariance of the feature descriptor under both spatial and intensity transforma-
tions. The possibility of combining the LTM descriptor with global image moments
for improving the classi�cation accuracy could also be looked at. For example, images
in Class-4 (Fig.(6.1)) have a global image shape that is distinctly di�erent from other
images. The use of global moments could reduce the classi�cation error seen in Table
6.1. Methods that combine local and global descriptors are increasingly being used
in texture analysis. Papakostas et. al., [18] recently introduced moment-based LBP
descriptor that combines the properties of locality, globality and invariance. Finally,
the discrimination power of the proposed LTM descriptors could be further improved
by selecting the free parameters using proper optimization methods such as the evo-
lutionary algorithm.
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