
CHAPTER 9

Using Low-Order Auditory Zernike Moments for Robust

Music Identi�cation in the Compressed Domain

Wei Li, Bilei Zhu, Chuan Xiao and Yaduo Liu

Methods based on moments and moment invariants have been extensively used in
image analysis tasks but rarely in audio applications. However, while images are typi-
cally two-dimensional (2D) and audio signals are one-dimensional (1D), many studies
have showed that image analysis techniques can be successfully applied on audio after
1D audio signal is converted into a 2D time-frequency auditory image. Motivated by
these observations, in this chapter we propose using moments to solve an important
problem of audio analysis, i.e., music identi�cation. Especially, we focus on music
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identi�cation in the compressed domain since nowadays compressed-format audio has
grown into the dominant way of storing and transmitting music.

There have been di�erent types of moments de�ned in the literature, among which
we choose to use Zernike moments to derive audio feature for music identi�cation.
Zernike moments are stable under many image transformations, which endows our
music identi�cation system with strong robustness against various audio distortions.
Experiments carried out on a database of 21,185 MP3 songs show that even when the
music queries are seriously distorted, our system can still achieve an average top-5 hit
rate of up to 90% or above.

9.1 Introduction

Moments and moment invariants have been widely used as pattern features in a num-
ber of image analysis applications [2, 23]. In contrast, only very few works have been
reported in using moment-based methods for audio problems (see [30] for example).
However, while images are typically two-dimensional (2D) and audio signals are one-
dimensional (1D), studies in the �eld of machine hearing have showed that image
analysis techniques can be successfully applied on audio after 1D audio signal is trans-
formed into a 2D time-frequency auditory image [25, 19, 7]. This suggests that, after
time-frequency transformation, methods based on moments and moment invariants
may also be powerful tools for analyzing audio.

In this chapter, we investigate using moments to solve an important problem of audio
analysis, i.e., music identi�cation. Music identi�cation is a technique that helps users
recognize unknown music from a short (typically a few seconds) and probably distorted
music segment. The technique relies on audio �ngerprinting, and by comparing the
�ngerprint extracted from the input music segment with those previously calculated
and stored in a �ngerprint database, a music identi�cation system can identify the
unknown music and return its metadata such as the title and the singer's name. To
date a number of music identi�cation algorithms have been published in the literature,
and some of them have even been deployed for commercial use [3]. However, most
of these existing algorithms operate on the PCM wave format, in spite of the fact
that nowadays compressed-format audio, especially MPEG-1 Layer III (MP3) music
has grown into the dominant way of storing and transmitting music. Therefore, in this
chapter we focus on music identi�cation in the compressed domain.

So far, there have been only a few works that perform music information re-
trieval (MIR) directly on the compressed domain. Liu and Tsai [18] calculated the
compressed-domain energy distribution from the output of polyphase �lters as feature
to index songs. Lie and Su [16] directly used selected modi�ed discrete cosine trans-
form (MDCT) spectral coe�cients and derived sub-band energy and its variation to
represent the tonic characteristic of a short-term sound and to match between two
audio segments. Tsai and Hung [27] calculated spectrum energy from sub-band coef-
�cients to simulate the melody contour and used it to measure the similarity between
the query example and those database items. Tsai and Wang [28] used scale factors
and sub-band coe�cients in an MP3 bit stream frame as features to characterize and
index the object. Pye [24] designed a new parameterization referred to as an MP3
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cepstrum based on a partial decompression of MP3 audio to facilitate the management
of a typical digital music library. Jiao et al. [10] took the ratio between the sub-band
energy and full-band energy of a segment as intra-segment feature and the di�erence
between continuous intra-segment features as inter-segment feature for robust audio
�ngerprinting. Zhou and Zhu [32] exploited long-term time variation information based
on modulation frequency analysis for audio �ngerprinting. Liu and Chang [17] calcu-
lated four kinds of compressed-domain features, i.e., MDCT, Mel-frequency cepstral
coe�cients, MPEG-7, and chroma vectors from the compressed MP3 bit stream to
perform MIR.

However, most of the existing compressed-domain music identi�cation algorithms
have a common drawback: they do not consider or obtain convincing results to the
most central problem of audio �ngerprinting, i.e., robustness. In practical applica-
tion scenarios, for example, recording music to a mobile phone and transmitting it
through wireless telecom network, the audio might often be contaminated by various
distortions and interferences like lossy compression, noise addition, echo adding, time
stretching (or time scale modi�cation, TSM) and pitch shifting. To provide promising
identi�cation results for unknown music queries, a music identi�cation system should
be insensitive to these distortions.

In this chapter, we propose a novel algorithm of compressed-domain music identi-
�cation that is robust to common audio distortions and interferences. The algorithm
is based on moments, and more speci�cally, we use Zernike moments to derive in-
variant audio features for music identi�cation. Of various types of moments that
have been investigated for image analysis, Zernike moments have been demonstrated
to outperform the others (e.g., geometric moments, Legendre moments and complex
moments) in terms of the insensitivity to image noise, information redundancy and
capability for faithful image representation [29]. The applications of Zernike moments
are widespread, including image recognition [12], human face recognition [8], image
representation and matching [5], image watermarking [13] and more recently audio
watermarking [30], etc. However, to the authors' knowledge, Zernike moments has
not yet been applied to music identi�cation, especially in the compressed domain.

In our algorithm, we �rst group 90 granules, the basic processing unit in decoding
the MP3 bit stream, into a relatively big block for the statistical purpose, then calculate
low-order Zernike moments from extracted MDCT coe�cients located in the selected
low to middle sub-bands, and �nally obtain the �ngerprint sequence by modeling the
relative relationship of Zernike moments between consecutive blocks. Experimental
results show that this low-order Zernike moment-based audio feature achieves high
robustness against common audio signal degradations like recompression, noise con-
tamination, echo adding, equalization, band-pass �ltering, pitch shifting, and slight
TSM. A 10-s music fragment, which is possibly distorted, can be identi�ed with an
average top-5 hit rate of 90% or beyond in our test dataset composed of 21,185 MP3
popular songs.

The remainder of this chapter is organized as follows. Section 9.2 introduces the
basic principles of MP3, bit stream data format, the concept of Zernike moments, and
its e�ectiveness as a robust compressed-domain feature of audio. Section 9.3 details
the steps of deriving MDCT low-order Zernike moment-based audio �ngerprint and the
searching strategy. Experimental results on identi�cation hit rate under various audio
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Figure 9.1: Block diagram of MP3 encoding.

Figure 9.2: A typical sequence of windows applied to a sub-band.

distortions and interferences are given in Section 9.4. Finally, Section 9.5 concludes
this chapter and points out some possible ways for future work.

9.2 Compressed-Domain Auditory Zernike

Moments

9.2.1 Principles of MP3 Encoding and Decoding

The process of MP3 encoding is shown in Fig.(9.1). First, a sequence of 1,152 PCM
audio samples are �ltered through a polyphase �lter bank into 32 Bark scale-like sub-
bands, which simulate the critical bands in the human auditory system (HAS), and
then decimated by a factor 32. Each sub-band will thereby contain 36 sub-band
samples that are still in the time domain [20, 26]. Next, the sub-bands are further
subdivided to provide better spectral resolution by MDCT transform. This starts with
a windowing using long or short window depending on the dynamics within each sub-
band. If the time-domain samples within a given sub-band show a stationary behavior,
a long window (e.g., 25 ms) is chosen in order to enhance the spectral resolution in
the following MDCT. If the sub-band samples contain transients, three consecutive
short windows (e.g., each is 4 ms) are applied in order to enhance the time resolution
in the following MDCT. Moreover, start window and stop window are also de�ned in
order to obtain better adaption when window transients appear. Figure 9.2 shows an
example of a sequence of windows applied to a sub-band.

MDCT transform performed on a sub-band will produce 18 frequency lines if a long
window is used and 3 groups of 6 frequency lines (each group belongs to di�erent time
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Figure 9.3: Frame format of MP3 bit stream.

intervals) if three consecutive short windows are used. 50% overlap between adjacent
windows is adopted in both cases. Therefore, one MDCT transform will produce 576
frequency lines (referred to as a granule) which are organized in di�erent ways in the
cases of long windowing and short windowing.
Combined with other adjuvant techniques including psychoacoustic model, Hu�man

encoding, and quantization etc., the �nal compressed bit stream is generated. Figure
9.3 displays the frame format of MP3 bit stream [22]. As shown in the �gure, each
MP3 frame has two granules to exploit further redundancies, and each granule contains
576 samples.
In MP3 decoder, the basic processing unit of the input bit stream is a frame of

1,152 samples, approximately 26.1 ms at the sampling rate of 44.1 kHz (note that
each granule can be dealt with independently) [14]. One granule of compressed data
is �rst unpacked and dequantized into 576 MDCT coe�cients then mapped to the
polyphase �lter coe�cients in 32 sub-bands by inverse MDCT. Finally, these sub-band
polyphase �lter coe�cients are inversely transformed and synthesized into PCM audio,
as shown in Fig.(9.4) [26]. Therefore, access of transformation coe�cients in Layer III
can be either at the MDCT or the �lter bank level, and the latter is obviously more
time-consuming.

9.2.2 A Brief Introduction to Zernike Moments

In this subsection, we give a brief introduction to the basic concept of Zernike mo-
ments. Zernike moments are constructed by a set of complex polynomials which form a
complete orthogonal basis set de�ned on the unit disk x2+y2 ≤ 1. These polynomials
have the form

Pnm(x, y) = Vnm(ρ, θ) = Rnm(ρ) exp(jmθ), (9.1)

where n is a non-negative integer, m is a non-zero integer subject to the constraints
that (n − |m|) is non-negative and even, ρ is the length of vector from the origin to
the pixel (x, y), and θ is the angle between the vector and X-axis in counter-clockwise
direction, Rnm(ρ) is the Zernike radial polynomials in (ρ, θ) polar coordinates de�ned
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Figure 9.4: Block diagram of MP3 decoding.

as

Rnm(ρ) =

n− |m|
2∑

s=0

(−1)s (n− s)!
s!(n+|m|2 − s)!(n−|m|2 − s)!

ρn−2s. (9.2)

Note that Rn,m(ρ) = Rn,−m(ρ), so Vn,−m(ρ, θ) = V ∗n,m(ρ, θ).
Zernike moments are the projection of a function onto these orthogonal basis func-

tions. The Zernike moments of order n with repetition m for a continuous 2D function
f(x, y) that vanishes outside the unit disk is de�ned as

Anm =
n+ 1

π

¨
x2+y2≤1

f(x, y)V ∗n,m(x, y)dxdy. (9.3)

For 2D signal-like digital image, the integrals are replaced by summations to

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)V ∗n,m(x, y), x2 + y2 ≤ 1. (9.4)

9.2.3 Compressed-Domain Auditory Zernike Moments

The inconvenience of directly applying Zernike moments on audio lies in that audio
is inherently a time-variant 1D data, while Zernike moments are only applicable for
2D data. Therefore, we must map audio signals to 2D form before making them
suitable for moment calculation. In our algorithm, we construct a series of consecutive
granule-MDCT 2D images to directly calculate the Zernike moments sequence in the
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Figure 9.5: An example of MDCT Zernike moments under various audio signal degra-
dations. Order = 2, block = 50 granules, hop size = 2 granules.

MP3 compressed domain. In light of the frame format of MP3 bit stream, one granule
corresponds to about 13 ms, which means that it is indeed an alternative representation
of time. On the other hand, MDCT coe�cients can be roughly mapped to actual
frequencies [4]. Therefore, the way we construct granule-MDCT images is virtually
done on the time-frequency plane.

Human audition can be viewed in parallel with human vision if the sound is converted
from a 1D signal to a 2D pattern distributed over time along a frequency axis, and the
2D pattern (frequency vs. time) constitutes a 2D auditory image [19, 25]. This way, we
may seek to explore alternative approaches to audio identi�cation by making recourse
to mature technical means of computer vision. Although the link between computer
vision and music identi�cation has been made in several published algorithms, which
all take short-time Fourier transform of time-domain audio to create spectrogram
image [11, 1, 33], methods based on visualization of compressed-domain time-MDCT
images have not yet been demonstrated for music identi�cation. We argue that mature
techniques in computer vision such as Zernike moments may in fact be useful for
computational audition; the detailed calculation procedures of the proposed method
will be described in the next section.

As stated in the introduction, the goal of calculating MDCT-based Zernike moment
is to use it as an audio �ngerprint after necessary modeling, for direct compressed-
domain music identi�cation. As an e�ective audio feature, will it be steady enough
under various audio signal distortions? We did some experiments to check it. Fig-
ure 9.5 shows an example of MDCT 2-order Zernike moments sequence calculated
from a 5-s clip of an MP3 song. The calculation includes several steps like granule
grouping, sub-bands selection, and auditory image construction, which will be depicted
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Figure 9.6: Distribution of MDCT coe�cients in `long window' and `short window'
types of granule.

in detail in the next section. It can be clearly seen that the Zernike moment curve
is rather stable, keeping its basic shape at the same time positions under common
audio signal distortions like MP3 recompression at 32 kbps, echo adding, band-pass
�ltering, noise contamination, volume modulation, equalization, and pitch shifting up
to ±10%. When the sample excerpt is slightly time scale-modi�ed, the curve only
translates a small distance along the time axis with little change to the basic shape.
These observed phenomena con�rm our initial motivation. Herein, low-order Zernike
moment of time-MDCT auditory image displays great potential to become a powerful
audio �ngerprint.

9.3 Algorithm Description

As described above, the main di�culty of applying Zernike moments to audio is the
dimension mismatching. So, we �rst depict how to create 2D auditory images from 1D
compressed-domain MP3 bit stream. The detailed procedure is described as follows.

9.3.1 MDCT-Granule Auditory Image Construction

The construction of MDCT-granule auditory image is composed of the following steps:
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Y-axis construction: MP3 bit stream consists of many frames, which are the basic
processing unit in decoding. Each frame is further subdivided into two independent
granules, each with 576 values. If a granule is encoded using long window, these
576 values represent 576 frequency lines and are assigned into 32 Bark scale-like sub-
bands, that is, each sub-band includes 18 frequency lines. If a granule is compressed
via short window, these values stand for 3 groups of 192 frequency lines, and each
group corresponds to one of the three consecutive windows respectively, see Fig.(9.6).

In order to construct the Y-axis of auditory images, we must unify the frequency
distribution of both long- and short-window cases by adapting the original MDCT-
granule relationship to achieve approximately the same frequency resolution. For long-
window cases, we group every three consecutive MDCT coe�cients of one granule into
a new sub-band value, which is equal to the mean of the absolute value of the original
three MDCT coe�cients, see the upper part of Eq.(9.5). For short-window cases, we
substitute the original three MDCT values belonging to di�erent windows at the same
frequency line with the mean of their absolute value, see the lower part of Eq.(9.5). In
this way, all MDCT values in a granule are uniformly divided into 192 new sub-bands
for both long- and short-window cases; this forms the basis for further construction of
auditory image.

sn(i, j) =


1
3

∑3i+2
n=3i |s(n, j)| for the case of long window

1
3

∑2
m=0 |sm(i, j)| for the case of short window

i = 0, 1, . . . , 191,

(9.5)
where sn(i, j) is the new MDCT coe�cient at the ith sub-band and jth granule,
s(n, j) is the original MDCT coe�cient at the nth frequency line and jth granule for
the long-window case; sm(i, j) is the original MDCT coe�cient at the ith frequency
line, jth granule and mth window for the short-window case.

X-axis construction: After the above Y-direction construction, the next step is to
set up the X-axis to form the �nal auditory images. In our algorithm, N continuous
granules (N = 90 in experiment) are partitioned into a block and act as the X-axis
of one auditory image. Overlap of blocks is taken to improve the robustness of our
algorithm against time desynchronization. The hop size between adjacent blocks isM
granules (M = 1 in experiment).

Auditory image construction: With the above de�nition of X- and Y-axes, we are
now to construct the auditory images for moment calculation. Figure 9.7 is an image
for illustration, where its pixels constitute an 192 × N matrix. 192 pixels along the
Y-axis represent 192 new MDCT coe�cients calculated in terms of Eq.(9.5), and N
pixels at the X-axis mean the N time-domain granules, i.e., a block. It is known that
sounds located in the low-middle frequency area cover the main content most vital
to the HAS and are usually much more robust against various audio distortions than
high frequency components. Therefore, we pick out the second to the �fty-�rst new
sub-band MDCT values in this method to act as the Y-axis, which roughly correspond
to 300 to 5,840 Hz of real frequency according to Table 9.1 [31]. N is set to 90
granules to form the X-axis and mitigate the problem of desynchronization.

Consequently, the (x, y) coordinates of a pixel in the kth constructed auditory image
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Figure 9.7: An illustration of the constructed auditory image.

are shown in Eq.(9.6)

fk(x, y) = sn(i, j)

k = 0, 1, . . . , Nblock − 1
x = i = 2, 3, . . . , 51
y = 0, 1, . . . , 89
j = k × hop size + y

, (9.6)

where k means the kth auditory image, and Nblock is the total number of blocks of
the query clip or the original music piece, which is variable and determined by the
audio length.

9.3.2 Compressed-Domain Audio Features: MDCT Zernike
Moments

Fragment input and robustness are known to be two crucial constraints on audio �n-
gerprinting schemes. If modeling with audio operations, this is equal to imposing
random cropping plus other types of audio signal processing on the input query exam-
ple. Random cropping causes serious desynchronization between the input �ngerprint
sequence and those stored ones, bringing a great threat to the identi�cation hit rate.
Usually, there are two e�ective mechanisms to resist time-domain misalignment, one
is invariant feature, and the other is implicit synchronization which might be more
powerful than the former [6]. However, in the MPEG compressed domain, due to its
compressed bit stream data nature and �xed frame structure, it is almost impossible
to extract meaningful salient points serving as anchors as in the uncompressed domain
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Table 9.1: Map between MDCT coe�cients and actual frequencies for long and short
windows sampled at 44.1 kHz

Long window Short window
Index of MDCT Frequency Index of MDCT Frequency

coe�cient (Hz) coe�cient (Hz)
0 ∼ 11 0 ∼ 459 0 ∼ 3 0 ∼ 459
12 ∼ 23 460 ∼ 918 4 ∼ 7 460 ∼ 918
24 ∼ 35 919 ∼ 1,337 8 ∼ 11 919 ∼ 1,337
36 ∼ 89 1,338 ∼ 3,404 12 ∼ 29 1,338 ∼ 3,404
90 ∼ 195 3,405 ∼ 7,462 30 ∼ 65 3,405 ∼ 7,462
196 ∼ 575 7,463 ∼ 22,050 66 ∼ 191 7,463 ∼ 22,050

[15]. Therefore, designing a statistically stable audio feature becomes the main method
to ful�ll the task of fragment retrieval and resisting time-domain desynchronization in
audio �ngerprinting.
With the preparations above, we substitute f(x, y) in Eq.(9.4) with fk(x, y) in

Eq.(9.6) and calculate the Zernike moments of the kth auditory image as below

Ak
nm =

n+ 1

π

∑
x

∑
y

fk(x, y)V ∗n,m(x, y), (9.7)

where n is the moment order, and m must be subject to the condition that (n− |m|)
is non-negative and even.
Note that n, the order, plays a crucial role in the moment calculation. A carefully

selected order will directly determine the robustness of this feature and the running
speed. Generally speaking, low-order moments characterize the basic shape of an
audio or image signal, while higher-order ones depict the high-frequency details [21].
Thereby, we naturally conjecture that low-order Zernike moments will perform better
than high-order moments in our application. In order to verify this assumption and help
obtain the most suitable order number for strong robustness, we did some comparative
experiments. As shown in Fig.(9.8), the Zernike moments of orders 2, 6, 10, and 16
are �rst calculated and then compared for the original audio segment and the audio
under two typical distortions, i.e., equalization and noise addition. It can be clearly
seen in the �gure that with the order increasing, the moment envelope �uctuates more
and more dramatically. The Zernike moment curve of the order 2 is the most stable
one in the experiment and is chosen as the �nal value in our algorithm. An a�liated
bene�t brought by this order is that the computation speed of its corresponding Zernike
moment is much faster than any other higher-order situations.

9.3.3 Fingerprint Modeling

On the basis of the Zernike moments calculated from a series of auditory images
sliding along the granule axis, we sum up all Zernike moments with order n ≤ 2 as the
�nal feature to further increase the invariance as shown in Eq.(9.8). The �nal audio
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Figure 9.8: Stability of MDCT Zernike moments at the order of 2 (upper left), 6 (upper
right), 10 (lower left) and 16 (lower right).

�ngerprint sequence is derived according to Eq.(9.9). This method is straightforward
yet e�ective by omitting the exact moment values and only retaining their relative
magnitude relationship. Similar methods have been used in query-by-humming systems
to model the progressive tendency of the melody line.

Zk =
∑

0 ≤ n ≤ 2
n− |m| ≥ 0

(n− |m|)%2 = 0

Ak
nm (9.8)

S(k) =

 0 if Zk < Zk+1

1 if Zk ≥ Zk+1
k = 0, 1, . . . , Nblock − 1. (9.9)

9.3.4 Fingerprint Matching

The emphasis of this chapter is to take compressed-domain audio Zernike moments
as the key features for audio �ngerprinting. As stated in Section 9.2, such kind
of feature is rather stable under common audio signal distortions and slight time-
domain misalignment like TSM. By further modeling with the fault-tolerant magnitude
relationship between moments of successive auditory images, the steadiness of the
derived �ngerprints is further reinforced. Therefore, by right of the power of the
stable �ngerprint, we can adopt a relatively straightforward yet e�ective measure,
i.e., Hamming distance, to perform exhaustive matching between the query example
and those stored recordings. An illustration of the matching procedure is shown in
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Figure 9.9: An illustration of the �ngerprint matching procedure.

Fig.(9.9). More speci�cally, let {x0, x1, . . . , xn−1} be the �ngerprint sequence of the
query example, {yi0, yi1, . . . , yiN−1} the �ngerprint sequence of the ith database song
(n� N), Nsong be the number of songs stored in the database, and Eq.(9.10) be the
minimum bit error rate (BER) of matching within a song.

BER(i) = 1
n min{(x0, x1, . . . , xn−1)⊗ (yij , y

i
j+1, . . . , y

i
j+n−1)

| j = 0, . . . , N − n}

i = 0, . . . , Nsong − 1,

. (9.10)

The total number of comparison within the database is (N − n+ 1)×Nsong.

Given a reasonable false positive rate (FPR), the threshold of the BER T can
be acquired from both theoretical and practical ways to indicate under what con-
dition a match can be called a hit. Let BER(i′) be the ascending reordered form of
BER(i), namely BER(0′) < BER(1′) < BER(2′) < BER(3′) < BER(4′) < . . . <
BER(Nsong − 1′), then the �nal retrieval results are summarized in Eq.(9.11).

result =


top1 if k = 0′

top5 elseif k ∈ {1′, 2′, 3′, 4′}
top10 elseif k ∈ {5′, 6′, 7′, 8′, 9′}
failed else

(9.11)

where k is the ascending rank of BER of the database song where the query example
is cut.
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9.4 Experiments

The experiments include a training stage and a testing stage. In the training stage,
three parameters (i.e., hop size, block size, and BER threshold) that a�ect the al-
gorithm's performance are experimentally tuned to get the best identi�cation results.
To achieve this end, a small training music database composed of 100 distinct MP3
songs is set up. In the testing stage, the algorithm with the obtained parameters
from training is tested on a large dataset composed of 21,185 di�erent MP3 songs to
thoroughly evaluate the identi�cation performance and robustness. All songs in the
two databases are mono, 30 s long, originally sampled at 44.1 kHz, and compressed
to 64 kbps, with a �ngerprint sequence of 672 bits. In both stages, audio queries are
prepared as follows. For each song in the training (testing) database, a 10-s query
segment is randomly cut and distorted by 13 kinds of common audio signal manipula-
tions to model the real-world environment, and hence, 1,400 (296,590) query segments
(including the original segments) are obtained, respectively.

9.4.1 Parameter Tuning

First, we describe the parameter tuning procedure. Note that when the combination
of parameters varies, the associated �ngerprint database is named using the following
rule, i.e., FPDB_<hop-size>_<block-size>_<order-number>.

E�ect of hop size: Hop size is the interval between two adjacent blocks in the
time axis. Smaller hop size is bene�cial to alleviate the desynchronization between
the query segment and its true counterpart in the original audio. Since each block is
concatenated by granules, theoretically, one granule of hop size will lead to the minimal
displacement. This conclusion is also experimentally demonstrated in Fig.(9.10), where
the hop size varies from 1 to 4, the block size is �xed at 30 or 40, and the Zernike
moment order is �xed at 2 or 4. It can be clearly seen that when the hop size is 1,
the corresponding blue curves are always above other curves. More precisely, when
the hop size becomes bigger, the top-1 hit rate curve moves downwards, namely the
identi�cation accuracy becomes worse.

E�ect of block size: As stated in Section 9.3, a block is assembled by a set of
granules in order to endure small variations in the time domain. Generally, longer block
will generate steadier Zernike moment value at the cost of lowering local sensitivity
and discriminability of �ngerprints. To investigate the e�ect of block size on top-1 hit
rate, we �rst �x the hop size at 1 and Zernike moment order at 2 and then vary the
block size from 30 to 120 by increment of 10. From Fig.(9.11), it can be seen that
for the common audio signal distortions such as lossy compression, echo adding, and
resampling, the top-1 hit rates are not obviously a�ected by the increase of the block
size. However, for TSM (±2% and ±3% in the experiment), the corresponding four
curves (in the middle of the �gure) go up monotonically with the increase of the block
size and reach a stable status when block size is equal to 90 granules. Therefore, the
parameter block size is set as 90 in the experiment.

BER thresholding: Since we use BER as the metric to test �ngerprint similarity
(discrimination) and robustness, we have to �rst determine a reasonable threshold T
based on the desired FPR in real applications. It is insigni�cant to claim the robustness
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Figure 9.10: In�uence of various hop sizes on top-1 hit rate.

without taking FPR into consideration. For a query �ngerprint and an equal-length
part of a stored �ngerprint, they are judged as similar in a perceptual sense if the
BER is below the threshold T . In this section, we adopt experimental method to
estimate the FPR. First, a set of �ngerprint pairs combined from di�erent songs are
constructed, then the BER of each pair is calculated. From the result we �nd out that
all BER values exhibit a bell-shaped distribution around 0.5 (this result is similar to
that of [9]). Given a speci�c threshold T , FPR is determined by dividing the number
of falsely matched queries by that of all �ngerprint pairs. We further observe that
experimental FPRs corresponding to most thresholds, for example from 0.2 to 0.4,
are acceptable in practice. Then, which threshold is most appropriate? To help make
this selection, we did some experiments from another point of view to investigate the
relationship between top-1 identi�cation hit rate and the BER threshold T as shown in
Fig.(9.12). It can be seen that when T increases from 0.30 to 0.40, the hit rate lines
under common audio signal distortions, pitching shifting, and TSM �rst successively
go upwards monotonously and then keep steady after 0.34; in other words, bigger
thresholds do not signi�cantly contribute to the identi�cation hit rate any more. In
conclusion, 0.34 is adopted as the BER threshold in the experiment.
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Figure 9.11: In�uence of various block sizes on top-1 hit rate.

Figure 9.12: Relationship between BER threshold and top-1 hit rate.

9.4.2 Identi�cation Results under Distortions

To simulate the real-world interference, we apply various audio signal operations on the
compressed query examples using audio editing tools Cool Edit (Adobe Systems Inc.,
CA, USA) and Gold Wave (GoldWave Inc., Canada). Since music identi�cation is done
in a fragmental way, the processing procedure is actually equivalent to a mixture of
random cut plus signal processing. For each song in the testing database, where 21,185
distinct songs are collected all together, a 10-s segment is �rst randomly cut and then
manipulated by 13 various audio signal distortions. Accordingly, the query set amounts
to 296,590 audio excerpts. With the parameters set as above (i.e., block size = 90,
hop size = 1, and BER threshold = 0.34), the top-1, 5, and 10 identi�cation rates
of the queries within the testing dataset are averaged and illustrated in Fig.(9.13).
The horizontal axis lists the abbreviation of audio signal distortions adopted in the
experiment. ORG means original audio signal which is not distorted. ECHO means
echo addition with 100-ms delay and 50% decay. EQUH means 10-band equalization.
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Figure 9.13: Identi�cation performance under various distortions.

PF10 and PZ10 mean pitch shifting by −10% and +10%, respectively. NOI20 means
noise addition at signal-to-noise ratio (SNR) of 20 dB. BP means band-pass �ltering
from 100 to 6,000 Hz. 32 means MP3 recompression under 32 kbps. VAL6 and VAL3
mean volume change under −6.02 and +3.52 dB, respectively. TSMZ2, TSMF2,
TSMZ3, and TSMF3 mean TSM under +2%, −2%, +3%, and −3%, respectively.
It can be seen that our proposed MDCT Zernike moment-based �ngerprint shows

satisfying identi�cation results, even under severe audio signal processing like heavy
lossy recompression, volume modulation, echo adding, noise interference, and vari-
ous frequency wrappings such as band-pass �ltering, equalization, and pitch shifting
(±10%). To be more speci�c, when the queries are original or only distorted by echo
adding, band-pass �ltering, and volume modulation, the top-5 hit rates (green bars)
are almost not in�uenced and all come close to 100%. Under other more severe signal
manipulations such as equalization, pitch shifting, noise addition, and MP3 compres-
sion, the top-5 hit rates are pretty good and still above 90%.
The only de�ciency is that under pitch-reserved TSM, which can be modeled as a

kind of cropping/pasting to relatively smooth local parts in between music edges [15],
the identi�cation results drop quickly with the increase of scaling factors and become
unacceptable when ±3% TSM are performed. This weakness is essentially caused
by the �xed data structure of the MP3-compressed bit stream. In this case, implicit
synchronization methods based on salient local regions cannot be applied. The only
way to resist serious time-domain desynchronization is to increase the overlap between
consecutive blocks and design more steady �ngerprints; however, the overlap has an
upper limit of 100% (98% has been used in our algorithm), and discovering more
powerful features is not an easy work.

9.4.3 False Analysis

In a practical identi�cation system, two important false statistics must be taken into
account to thoroughly evaluate the overall performance. The �rst is called false neg-
ative, which refers to the fail of detecting correct songs even though the query is
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Table 9.2: False statistics of identi�cation results

Actual
Predicted

Positive Negative
Positive (27,378) 23,336 4,042
Negative (29,256) 106 29,150

included in the database. The second is false positive, which refers to the return of
wrong matched results for a query that does not belong to the database and is more
annoying in commercial applications. Below, a confusion matrix is adopted to analyze
the two types of errors. To achieve this aim, we prepare 27,378 queries that exist
in the testing database and 29,256 queries that come from outside the database. In
all the true queries, 4,042 of them are not successfully retrieved from the database
(i.e., the false negative rate is 14.7%), while for all the false queries, 106 of them are
falsely judged to be within the database and get wrong results (i.e., the false positive
rate is 3.6 × 10−3), as shown in Table 9.2. The false positive rate is acceptable in
practical application, while the false negative rate is relatively big. The reasons are
twofold, one is that the above numbers are top-1 identi�cation results, the other is that
many database songs of a same singer have quite similar musical aspects in rhythm,
harmonic progression, instrument arrangement etc., so that the queries are confused.

9.5 Conclusion

In this chapter, a novel music identi�cation algorithm is proposed, which directly works
on the MP3-encoded bit stream by constructing the MDCT-granule auditory images
and then calculating the auditory Zernike moments. By virtue of the short-time sta-
tionary characteristics of such feature and large overlap, 10-s long query excerpts are
shown to have achieved promising identi�cation hit rates from the large-scale database
containing intact MP3 songs and distorted copies under various audio signal opera-
tions including the challenging pitch shifting and TSM. For future work, combining
the MDCT Zernike moments with other powerful compressed-domain features using
information fusion will be our main approach to improve the identi�cation perfor-
mance and robustness against large time-domain misalignment and stretching. Cover
song identi�cation performed right on the compressed domain is our �nal aim to be
accomplished.
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