
CHAPTER 1

On Constructing Distance and Similarity Measures based on
Fuzzy Implications

Anestis G. Hatzimichailidis, George A. Papakostas and Vassilis G.
Kaburlasos

This chapter deals with the construction of distance and similarity measures by
utilizing the theoretical advantages of the fuzzy implications. To this end the basic
definitions of fuzzy implications are initially discussed and the conditions of typical
distance and similarity measures that need to be satisfied are defined next. On the ba-
sis of this theory a straightforward methodology for building fuzzy implications based
measures is analysed. The main advantage of the proposed methodology is its gener-
ality that makes it easy to be adopted in several types of fuzzy sets.
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1.1 Introduction
Various distance and similarity measures for fuzzy sets have been proposed in the liter-
ature e.g. [7, 15, 20, 25, 34, 43, 47, 49, 50] and [10, 11, 13, 27, 28, 29, 30, 31, 32, 33],
respectively. The usefulness of distance and similarity measures for fuzzy implications
lies in the fact of the non-uniqueness of classical implication when it is extended to
fuzzy logic. So, in applications, one often must choose specific fuzzy operators to
best match available data or experience and, to this end, similarity classifications are
a useful tool. Finding the degree of similarity between the available fuzzy implications
to a specific problem, helps us to calculate the degree of similarity of their behav-
ior. In general, it is a difficult problem to select an appropriate fuzzy implication for
approximate reasoning under each particular situation.
Quantifying similarity between fuzzy sets is very important in applications ranging

from pattern recognition and machine learning, to decision making, market prediction,
etc. [7].
A theoretical usefulness of similarity measures is that it enables us to classify fuzzy

implications into equivalence classes, based on their degree of similarity. Also, the
existence of an ordering relation between fuzzy implications helps us to order fuzzy
implications in a more powerful and/or more functional classes. All measures listed
here are intended for applications and may be customized according to the needs and
intuition of the user.
We refer to two families of distance measures between binary fuzzy operators, along

with its dual families of similarity measures, which have been proposed for this purpose.
One of these families, refers to the family of normalized distance measures between

binary fuzzy operators, along with its dual family of similarity measures. These mea-
sures are based on matrix norms and arise from the study of the aggregate plausibility
of set-operations [7].
The other of these families, based on the criteria, which used to select the most

appropriate fuzzy implication, coming to the condition that the generalized modus
tollens coincides with the classic modus tollens and the generalized modus ponens
coincides with the classical modus ponens [23, 24, 42].

1.2 Preliminaries
In this section, we review standard notations and definitions from the literature of
fuzzy sets, fuzzy implications, intuitionistic fuzzy sets and measures [15, 16, 17, 19,
35, 41, 46].

1.2.1 Fuzzy Implications. Basic Notations and Definitions
Let X denote a universe of discourse. Then, a fuzzy set A in X is defined as a set
of ordered pairs A = {〈x, µA (x)〉|x ∈ X}, where the function µA (x) : X → [0, 1]
defines the degree of membership of the element x ∈ X.
A binary operation i on the unit interval (i.e. a [0, 1] × [0, 1] → [0, 1] map-

ping) is called a fuzzy intersection, if it is an extension of the classical Boolean
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intersection:i (a, b) ∈ [0, 1] ,∀a, b ∈ [0, 1] and i (0,0) = i (0, 1) = i (1, 0) = 0, i (1,1) =
1.
A canonical model of fuzzy intersections is the family of triangular norms (briefly

t-norms). A t-norm T is a function of the form: T : [0, 1] × [0, 1] → [0, 1], which is
commutative, associative, non-decreasing, and T (a, 1) = a,∀a ∈ [0, 1].
A t-norm T is called Archimedean, if it is continuous and for a ∈ (0, 1) , T (a, a) < a,

nilpotent if it is continuous and if, for all a ∈ (0, 1), there is ν ∈ N such that

T (
ν︷ ︸︸ ︷

a, ..., a ) = 0. Archimedean norms have two forms: nilpotent ones and those which
are not nilpotent. Those which are not nilpotent are called strict.
A function n : [0, 1]→ [0, 1] is called a negation, if it is non-increasing, i.e. if a ≥ b

then n (a) ≤ n (b)),∀a, b ∈ [0, 1] and n (0) = 1, n (1) = 0.
A negation n is called strict, if and only if n is continuous and strictly decreasing,

i.e. if a > b then n (a) < n (b) ,∀a, b ∈ [0, 1].
A strict negation n is called strong, if it is self-inverse, i.e. n (n (a)) = a, ∀a ∈ [0, 1].
A function S : [0, 1]× [0, 1]→ [0, 1] is called a triangular conorm, (briefly t-conorm)

if satisfying the properties:

(i) S (a, 0) = a for all a ∈ [0, 1], (Boundary Condition).

(ii) if a ≤ c and b ≤ d then S (a, b) ≤ S (c, d), (Monotonicity).

(iii) S (a, b) = S (b, a)for all a, b ∈ [0, 1], (Commutativity).

(iv) S (S (a, b) , c) = S (a, S (b, c))for all a, b, c ∈ [0, 1], (Associativity).

A fuzzy implication I is a function of the form: I : [0, 1] × [0, 1] → [0, 1], which for
any possible truth values a, b of given fuzzy propositions P , Q, respectively, defines
the truth value, I (a, b), of the conditional proposition “if P then Q”. The function
I should be an extension of the classical implication from the domain {0, 1} to the
domain [0, 1], of truth-values in fuzzy logic.
The implication operator of classical logic is a mapping: m : {0, 1} × {0, 1} →
{0, 1}, which satisfies the conditions:

m (0, 0) = m (0, 1) = m (1, 1) = 1 andm (1, 0) = 0.

The latter conditions are typically the minimum requirements for a fuzzy implication
operator. In other words, fuzzy implications are required to reduce to the classical
implication when truth-values are restricted to 0 and 1; i.e.

I (0, 0) = I (0, 1) = I (1, 1) = 1 and I (1, 0) = 0.

One way of defining an implication operator m in classical logic is using formula

m (a, b) = ¬a ∨ b, a, b ∈ {0, 1} (1.1)

where ¬a denotes the negation of a.
Another three different Boolean expressions for the implication functionm are shown

next:
m (a, b) = max {x ∈ {0, 1} : a ∧ x ≤ b} , a, b ∈ {0, 1} , (1.2)
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m (a, b) = ¬a ∨ (a ∧ b) , (1.3)

m (a, b) = (¬a ∧ ¬b) ∨ b,∀a, b ∈ {0, 1} . (1.4)

Fuzzy logic extensions of the previous formulas respectively, are (∀a, b ∈ [0, 1]):

IS (a, b) = S (n (a) , b) , (1.5)

IR (a, b) = sup {x ∈ [0, 1] | T (a, x) ≤ b} , (1.6)

IQL (a, b) = S (n (a) , T (a, b)) , (1.7)

ID (a, b) = S (T (n (a) , n (b)) , b) , (1.8)

where S, T and n denote a t-conorm, a t-norm, and a strong fuzzy negation, respec-
tively. Note that functions S and T are dual (with respect to n). Recall that a t-norm
T and a t-conorm S are called dual (with respect to a fuzzy negation n) if and only
if both S (n (a) , n (b)) = n (T (n (a) , n (b)))and T (n (a) , n (b)) = n (S (a, b)) hold
∀a, b ∈ [0, 1]. A triple 〈S, T, n〉 where n is a strong negation, is a De Morgan triple
and a triple 〈S, T, n〉 is called Lukasiewicz triple, if T is nilpotent.
Fuzzy implications obtained from Eq.(1.5) are usually referred to as S-implications

(the symbol S is often used for denoting t-conorms) whereas fuzzy implications ob-
tained from Eq.(1.6) are called R-implications, as they are closely connected with
the so-called resituated semi group and fuzzy implications obtained from Eq.(1.7)
are called QL-implications, since they were originally employed in quantum logic [35].
Also, in the literature, fuzzy implications obtained from Eq.(1.8) are called Dishkant
implications or D-implications in short [38].
Contrary to the above theoretical definitions, in fuzzy systems applications the

predominant practice (known as the Mamdani method) is to employ fuzzy products
(symmetric operators, formally akin to t-norms) instead of implications, and to ag-
gregate the results by union (usually by the max {. . .}). The fuzzy products most
commonly used in applications are:

Mamdani rule IM (a, b) = min {a, b} and
Larsen rule ILa (a, b) = a · b.

Fuzzy products clearly do not reduce to the classical implication in the limit. In
fact, they differ fundamentally from fuzzy implications in that they: a) abide by
“falsity implies nothing” (rather than “everything”) and b) do not distinguish between
predicate (cause) and antecedent (effect).
In view of these properties, the Mamdani method is best suited to inference based

on phenomenological information [35]. We refer to IM, ILa as the “engineering impli-
cations”, contrary to the fuzzy implications [39].
A number of basic properties of the classical (logic) implication has been generalized

by fuzzy implications. Hence, a number of “reasonable axioms” emerged tentatively
for fuzzy implications. Some of the aforementioned axioms are displayed next [35].



On Constructing Distance and Similarity Measures based on Fuzzy Implications 5

A1. a ≤ b⇒ I (a, x) ≥ I (b, x). Monotonicity in first argument
A2. a ≤ b⇒ I (x, a) ≤ I (x, b). Monotonicity in second argument
A3. I (a, I (b, x)) = I (b, I (a, x)). Exchange property
A4. I (a, b) = I (n (b) , n (a)). Contraposition
A5. I (1, b) = b. Neutrality of truth
A6. I (0, a) = 1. Dominance of falsity
A7. I (a, a) = 1. Identity
A8.I (a, b) = 1⇔ a ≤ b. Boundary Condition
A9. I is a continuous function. Continuity

Fuzzy implications do not fulfill the above nine axioms. Fuzzy implications that
satisfy all the listed axioms are characterized by the theorem of Smets and Magrez
[46]. Note that all the S-implications fulfill the axioms A1, A2, A3, A5, A6 and, when
the negation is strong, A4. Also, all the R-implications fulfill the axioms A1, A2, A5,
A6 and A7. In generalIQL-implications violate property A1, the conditions under which
this property is satisfied fromIQL-implications can be found in [18]. Note that it has
been shown that: If T be a t-norm, S a t-conorm and n a strong negation, then the
corresponding QL-operator, IQL, is a QL-implication if and only if the corresponding
D-operator, ID, is a D-implication [38].
In addition, from the above definition of fuzzy implication, Fodor and Roubens [19]

have given the following definition of fuzzy implications.
A fuzzy implication I is a function of the form: I : [0, 1]× [0, 1]→ [0, 1], which hold
∀a,b ∈ [0, 1]:

(i) I (0, 0) = I (0, 1) = I (1, 1) = 1and I (1, 0) = 0,

(ii) a ≤ b⇒ I (a, x) ≥ I (b, x),

(iii) a ≤ b⇒ I (x, a) ≤ I (x, b),

(iv) I (0, a) = 1,

(v) I (a, 1) = 1,

(vi) I (1, 0) = 0.

1.2.2 Metric Distance. Basic Notations and Definitions
A metric distance d in a set X 6= ∅, is a real function d : X × X → R+

0 , which
satisfies the following conditions:

(i) ∀x, y ∈ X, d (x, y) ≥ 0,

(ii) ∀x, y ∈ X, d (x, y) = 0⇔ x = y, Reflectivity,

(iii) ∀x, y ∈ X, d (x, y) = d (y, x), Symmetry,

(iv) ∀x, y, z ∈ X, d (x, z) + d (z, y) ≥ d (x, y), Triangle Inequality.
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If d satisfies the above conditions (i), (iii), (iv) and also, satisfies d (x, x) = 0,∀x ∈ X
and d (x, y) = 0 for some x 6= y, then it is a pseudo-metric. If d satisfies the conditions
(i), (ii) and (iii), then it is a semi-metric.
Let d be a metric distance in a set X 6= ∅, then the following properties hold:

(i) ∀x1, x2, ..., xv ∈ X, d (x1, xv) ≤ d (x1, x2) + d (x2, x3) + ...+ d (xv−1, xv),

(ii) ∀x, y, a ∈ X, |d (x, a)− d (y, a)| ≤ d (x, y),

(iii) ∀x, y, x′, y′ ∈ X, |d (x, y)− d (x′, y′)| ≤ d (x, x′) + d (y, y′).

A pair (X, d), where X is a set it have a metric d, is called metric space.
Let a set X 6= ∅, an internal operation + : X ×X → X and an external operation

� : R ×X → X, the quadruple (X,+,R, �) is called real linear space, when hold the
following:

(i) for the internal operation +:

∀x, y, z ∈ X,x+ (y + z) = (x+ y) + z,

∃θ ∈ X : ∀x ∈ X, θ + x = x+ θ = x,

∀x ∈ X,∃x′ ∈ X,x+ x′ = x′ + x = θ,

∀x, y ∈ X,x+ y = y + x.

(ii) for the external operation � :

∀κ ∈ R,∀x, y ∈ X,κ � (x+ y) = κ � x+ κ � y,

∀κ, λ ∈ R,∀x ∈ X, (κ+ λ) � x = κ � x+ λ � x,

∀κ, λ ∈ R,∀x ∈ X,κ � (λ � x) = (κ � λ) � x,
∀x ∈ X, 1 � x = x.

Let X be a real linear space. A mapping ‖‖ : X → R is called a norm of X, when
satisfies the following three conditions:

(i) ∀x ∈ X, ‖x‖ = 0⇔ x = 0,

(ii) ∀k ∈ R,∀x ∈ X, ‖kx‖ = |k| · ‖x‖,

(iii) ∀x, y ∈ X, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Let ‖‖ be a norm of X, then the following properties hold:

(i) ∀x ∈ X, ‖x‖ = ‖−x‖ , (ii)∀x ∈ X, ‖x‖ ≥ 0,

(ii) ∀x, y ∈ X, ‖x− y‖ = ‖y − x‖,

(iii) ∀x, y ∈ X, |‖x‖ − ‖y‖| ≤ ‖x± y‖,

(iv) ∀x1, x2, ..., xν ∈ X, ‖x1 + x2 + ...+ xν‖ ≤ ‖x1‖+ ‖x2‖+ ...+ ‖xν‖.
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1.2.3 Metric Distances on Fuzzy Sets and Intuitionistic Fuzzy
Sets

Various metric distances, involving fuzzy sets, have been proposed in [7, 15, 34]. Some
common metrics, which are used for the description of the distance between fuzzy sets,
are the following:
If the universe set X is finite, i.e. X = {x1, ..., xn} then for any two fuzzy subsets

A and B of X with membership functions µA (.) and µB (.), respectively, we have:

• Hamming Distance

dH (A,B) =
n∑
i=1
|µA (xi)− µB (xi)| (1.9)

• Normalized Hamming Distance

dn−H (A,B) = 1
n

n∑
i=1
|µA (xi)− µB (xi)| (1.10)

• Euclidean Distance

dE (A,B) =

√√√√ n∑
i=1

(µA (xi)− µB (xi))2 (1.11)

• Normalized Euclidean Distance

dn−E (A,B) =

√√√√ 1
n

n∑
i=1

(µA (xi)− µB (xi))2 (1.12)

Intuitionistic fuzzy sets (IFSs) have been proposed by Atanassov, in 1983, as a gener-
alization mathematical framework of the traditional fuzzy sets (FSs) originated from
an early work of Zadeh [1, 2, 3, 4, 5, 52, 53]. The main advantage of the IFSs is their
property to cope with the hesitancy that may exist due to information impression. This
is achieved by incorporating a second function, along with the membership function
of the conventional FSs, called non-membership function. In this way, apart from the
degree of the belongingness, IFSs also combine the notation of the non-belongingness
to better describe the real status of the information.
We note that, Atanassov introduced the concept of the intuitionistic fuzzy set, or

for short, as follows:
An intuitionistic fuzzy set A in X is an object of the following form:

A = {〈x, µA (x) , vA (x)〉 |x ∈ X}
where the functions, µA : X → [0, 1] and vA : X → [0, 1], define the degree of
membership and the degree of non-membership of the element x ∈ X, respectively
and for every x ∈ X : 0 ≤ µA (x) + vA (x) ≤ 1.
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If πA (x) = 1 − µA (x) − vA (x) , then πA (x) is the degree of non-determinacy of
the element x ∈ X to the set A and πA (x) ∈ [0, 1] ,∀x ∈ X.
It is easily seen that each fuzzy set is a particular case of the intuitionistic fuzzy set.
Also, if A is a fuzzy set then πA (x) = 0,∀x ∈ X.
As in the first introduction of the IFSs and in the consequent study on the fun-

damentals of the IFSs, a lot of attention has been paid on developing distance or
similarity measures between the IFSs, as a way to apply them on several problems of
the engineering life.
Atanassov suggested [5] the generalization of the above distances Eq.(1.9)–Eq.(1.12)

for IFSs, as follows:
Let A, B be IFSs in X, with membership functions µA (.), µB (.) and with non-

membership functions vA (.), vB (.), respectively, then:

• Hamming Distance

dH (A,B) = 1
2

n∑
i=1

[|µA (xi)− µB (xi)|+ |νA (xi)− νB (xi)|] (1.13)

• Normalized Hamming Distance

dn−H (A,B) = 1
2n

n∑
i=1

[|µA (xi)− µB (xi)|+ |νA (xi)− νB (xi)|] (1.14)

• Euclidean Distance

dE (A,B) =

√√√√1
2

n∑
i=1

[
(µA (xi)− µB (xi))2 + (νA (xi)− νB (xi))2

]
(1.15)

• Normalized Euclidean Distance

dn−E (A,B) =

√√√√ 1
2n

n∑
i=1

[
(µA (xi)− µB (xi))2 + (νA (xi)− νB (xi))2

]
(1.16)

1.3 Distance and Similarity Measures based on Fuzzy
Implications

1.3.1 Distance Measures based on Fuzzy Implications and
Matrices Norms

These measures are based on matrix norms and arise from the study of the aggregate
plausibility of set-operations [7]. The definition and properties of each family member
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depend on a binary fuzzy operator and a matrix norm, both chosen by the user to
match the metric to the application. Also, similarity measures provide the numerical
tools for quality classification fuzzy binary operators to a specific problem.
The distance measure is defined as follows [7]:

Definition 1. Given two fuzzy sets A in X = {x1, ..., xm} and B in Y = {y1, ..., yn}
with membership functions µ (·) and ν (·), and two binary fuzzy operators I1, I2 ∈ =,
where = be an available set of fuzzy implications, define a distance d : = × = →
[0,+∞) based on some tensor- or operator-norm, ‖·‖, by:

d (I1, I2 : A,B) = ‖Σ1 (A,B)−Σ2 (A,B)‖ ,

where Σk (A,B) = [Ik (µ (xi) , v (yj))], 1 ≤ i ≤ m, 1 ≤ j ≤ n, k ∈ {1, 2}, i.e.,
Σk (A,B) = [Ik (µ (xi) , v (yj))]=

Ik





µ (x1)
.
.
.

µ (xi)
.
.
.

µ (xm)


,
[
v (x1) , ..., v (xj) , ..., v (xn)

]


=



I (µ (x1) , v (x1)) ... I (µ (x1) , v (xj)) ... I (µ (x1) , v (xn))
. . .
. . .
. . .

I (µ (xi) , v (x1)) ... I (µ (xi) , v (xj)) ... I (µ (xi) , v (xn))
. . .
. . .
. . .

I (µ (xm) , v (x1)) ... I (µ (xm) , v (xj)) ... I (µ (xm) , v (xn))


.

The best candidates for applications are norms of low order and akin to commonly
used vector norms, which may arise either as tensor norms or as even operator norms.
The three obvious choices are:

‖Σ‖nH
∧=
‖Σ (A,B)‖H

mn

∧=
∑m
i=1
∑n
j=1 |σij |

mn
,

‖Σ‖nF
∧=
‖Σ (A,B)‖F√

mn

∧=

√∑min{m,n}
k=1 S2

k (Σ)
mn

,
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‖Σ‖n2
∧=
‖Σ (A,B)‖2√

mn

∧= S1 (Σ)√
mn

≡
√
S2

1 (Σ)
mn

.

In direct analogy with the previous, the three practical choices for applications are:

‖Σ‖nH → dnH (I1, I2 : A,B) ∧=
‖Σ1 (A,B)− Σ2 (A,B)‖H

mn

∧=
∑m
i=1
∑n
j=1 |I1,ij − I2,ij |
mn

,

‖Σ‖nF → dnF (I1, I2 : A,B) ∧=
‖Σ1 (A,B)− Σ2 (A,B)‖F√

mn

∧=

√√√√min{m,n}∑
k=1

S2
k (Σ1 − Σ2)

mn
,

‖Σ‖n2 → dn2 (I1, I2 : A,B) ∧=
‖Σ1 (A,B)− Σ2 (A,B)‖2√

mn

∧= S1 (Σ1 − Σ2)√
mn

,

where
{
S1, . . . , Smin{m,n}

}
are the singular values of Σ in decreasing order. Note

that, the singular values of a matrix are non-negative real numbers that character-
ize its essence as an operator (neglecting reflections and rotations, i.e., orthogonal
transformations) [7].
Since all entries of (Σ1 −Σ2) take values in [−1, 1], all distances defined in terms

of the norms proposed in the previous subsection satisfy (on any finite X, Y ):

d (I1, I2 : A,B) ∈ [0, 1] ,

for all A, B in X = {x1, ..., xm} and Y = {y1, ..., yn}, respectively, and I1, I2 ∈ =.
In the case of I1 = I2 the distance vanishes, regardless of the fuzzy sets and matrix

norm chosen. Finally, if both fuzzy operators I1 and I2 are extensions of the same
classical operator and A and B are classical sets, the matrices Σ1 and Σ2 are equal
and the distance vanishes.
All these distance measures depend on the choice of fuzzy sets A and B. In principle,

a metric d (I1, I2 : X,Y ) free of this dependence may be defined as the aggregation
of d (I1, I2 : A,B) over all possible pairs (A,B). In practice, aggregation by direct
computation is not feasible.
So, a disadvantage of these measures is that, as they rely on the availability of two

particular fuzzy sets, which, in the case of fuzzy implications, may be viewed as a set
of predicates and a set of antecedents.
A family of distance measures for finite fuzzy sets is motivated by the corresponding

family of distance measures for fuzzy implications proposed in above.
This measure formulates the information of each set in matrix structure, where

matrix norms in conjunction with fuzzy implications can be applied to measure the
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distance between the fuzzy sets. The advantage of this novel distance measure is its
flexibility, which permits different fuzzy implications to be incorporated by extending
its applicability to several applications where the most appropriate implication is used.
For any finite universe set X = {x1, ..., xn} the set of fuzzy sets on it is denoted

by FS (X). The distance measure, for finite fuzzy sets, is defined as follows [7]:

Definition 2. Consider two fuzzy sets A,B ∈ FS (X), on a finite universe X such
that X ≡ suppA ∪ suppB, a fuzzy implication I and any tensor- or operator-norm
‖�‖. Then

d (A,B : I) = ‖Σ (A,A)−Σ (B,B)‖

defines a metric distance d : FS(X)× FS(X)→ [0, 1].

This definition actually introduces multiple families of metrics with different mean-
ings, according to the fuzzy implication chosen. The family based on t-norms is akin
to traditional normalized metrics on fuzzy sets (see Section1.3). The family based on
fuzzy implications emphasizes plausibility distribution over scaling.
Both definitions are application-oriented, as they rely on the availability of two

particular fuzzy sets, which, in the case of fuzzy implications, may be viewed as a
set of predicates and a set of antecedents. Our definitions are also dependent on the
choice of a matrix metric (i.e., either a tensor- or an operator-norm).
As always with fuzzy sets, one must choose the distance measure that best matches

one’s intuition of relative and absolute distances for the specific application at hand.
The above distance measure extended to intuitionistic fuzzy sets (IFSs). To point

out that several researchers believe that, there is a strong connection between intu-
itionistic fuzzy sets, interval-valued fuzzy sets and L-fuzzy sets. So, these measures
in intuitionistic fuzzy sets might be expressed equivalently using either intuitionistic
fuzzy sets or interval-valued fuzzy sets. Hence, these measures can easily be extended
more generally to lattice fuzzy (L-fuzzy) sets [9, 12, 14, 20, 21, 22, 48].
Let X denote a universe of discourse, where X is a finite and let IFS (X) denote

the set of all IFSs in X.

Definition 3. Given two IFSs,

A = {〈x, µA (x) , vA (x)〉 |x ∈ X} andB = {〈x, µB (x) , vB (x)〉 |x ∈ X} ,

where X = {x1, ..., xn} is a finite universe. Also, let I be a fuzzy implication and any
tensor-or operator-norm ‖·‖. Then

d(A,B; I) ∧= ‖Σ (µA)−Σ (µB)‖+ ‖Σ (vA)−Σ (vB)‖ (1.17)

where Σ (µ·) =
[

I
i=1,...,n

(µ· (xi) , µ· (xi))
]
, Σ (v·) =

[
I

i=1,...,n
(v· (xi) , v· (xi))

]
, de-

fines a metric distance d : IFS (X)× IFS (X)→ [0,+∞).
Note that, the n× n matrices Σ (µ·) defined as follows:

Σ (µ·)
∧=
[

I
i=1,...,n

(µ· (xi) , µ· (xi))
]

=
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I



µ· (x1)

.

.

.
µ· (xn)

 , [ µ· (x1) , ..., µ· (xn)
]
 =


I (µ· (x1) , µ· (x1)) ... ... I (µ· (x1) , µ· (xn))

. . . .

. . . .

. . . .
I (µ· (xn) , µ· (x1)) ... ... I (µ· (xn) , µ· (xn))

 .
The above function d (A,B; I) is a metric [7, 25, 26]. So, this definition actually

introduces multiple families of metrics with different meanings, according to the binary
operator chosen. In Eq.(1.17) the norm ‖Σ‖ is computed by using the largest non
negative eigenvalue of the positive definite Hermitian matrix ΣTΣ(ΣT is the transpose
of matrix Σ) [6],

‖Σ‖ =
√
λmax.

Definition 4. The introduced distance is very flexible in the sense that it enables the
usage of an appropriate fuzzy implication regarding the application, by resulting to a
wide range of distances of different properties and capabilities. Also, the incorporation
of different fuzzy implications combined with the matrix norms gives a wide range of
distance measures with different properties and abilities.

1.3.2 Similarity Measures based on Fuzzy Implications and
Matrices Norms

Similarity measures have become an important tool to quantify a similarity between
two fuzzy sets. This topic has been discussed in many papers from different points of
view [10, 11, 13, 27, 28, 29, 30, 31, 32, 33, 36, 37, 40, 44, 45, 51, 54].
Let X denote a finite universe of discourse and let two fuzzy sets, A, B, in X.

Pappis and Karacapilidis [44] defined the grade of similarity M (A,B) of the fuzzy
sets A and B, by:

M (A,B) =

1 ifA = B = ∅,∑
x∈X

min(A(x),B(x))∑
x∈X

max(A(x),B(x))
otherwise.

.

Two fuzzy sets and B in X, called approximately equal if and only if, given a small
nonnegative number ε, it is M (A,B) ≤ ε.
The grade of similarity M (A,B) of two fuzzy sets A and B in X, satisfy the

following properties:

(i) M (A,B) = M (B,A),

(ii) A = B ⇔M (A,B) = 1,

(iii) min (A,B) = 0⇔M (A,B) = 0,
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(iv) M (A,A′) = 1⇔ A = M∗,

(v) M (A,A′) = 0⇔A = I or A = ∅,

where A′ is the complement of A, while, I, ∅ and M∗ denote the fuzzy sets, those
with all grades of membership equal to 1, 0 or 0.5, respectively.
Also in [44] introduced the similarity measures, for two fuzzy sets A and B in a

finite universe X:

S (A,B) =

1 ifA = B = ∅,

1−
∑

x∈X
|A(x)−B(x)|∑

x∈X
(A(x)+B(x))

otherwise.

L (A,B) = 1−max
x∈X
|A (x)−B (x)| .

When we consider the measure L (A,B) for fuzzy setsA andB in arbitrary universes,
we have to replace max by sup.
Another way of defining similarity measures resulting from the generalization of the

definition of equality of two (classical) sets to fuzzy sets. That is, the generalization
of equivalence:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) .

In this case, as a degree of similarity is considered the degree of truth of the equality
A = B, which is defined using a t-norm and a fuzzy implication. The degree of truth
of A ⊆ B can be defined using any fuzzy implication as

⋂
x∈X

I (A (x) , B (x)).

This gives the following similarity measure, which is called “degree of sameness”,
presented by Bandler and Kohout in [8]:

E (A,B) = min
(

inf
x∈X

I (A (x) , B (x)) , inf
x∈X

I (B (x) , A (x))
)
.

All distance measures for binary fuzzy operators introduced in Definition 1 are nor-
malized and, therefore, give rise to corresponding similarity measures as follows:
The degree of similarity between two fuzzy implications I1, I2, as evaluated over

a pair of fuzzy sets A and B, of the finite universes X = {x1, ..., xm} and Y =
{y1, ..., yn}, respectively, is defined as:

S (I1, I2 : A,B) = 1− d (I1, I2 : A,B) .

The similarity measures defined as above take values in [0, 1], and are exactly 1 for
I1 = I2. Also, these similarity measures S, satisfies the following properties:

(i) S continuous,

(ii) S reflexive,

(iii) S symmetric: S (I1, I2 : A,B) = S (I2, I1 : A,B),

(iv) 0 ≤ S (I1, I2 : A,B) ≤ 1,
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(v) If I1 = I2 then S (I1, I2 : A,B) = 1,∀A,B.

It is also worth noting that, in the case of the d∞ norm, the corresponding similarity
measure:

S∞ (I1, I2 : A,B) = 1− d∞ (I1, I2 : A,B) = 1−max
i

max
j
|I1 (aι, bj)− I2 (aι, bj)| ,

is akin to the similarity measure for fuzzy sets A,B ∈ FS(X) proposed in [7]:

L (A,B) = 1− d∞ (A,B) .

Regarding the advantages, the numerical experiments with similarity measures on
a set of fuzzy implications and engineering implications, and the equivalence classes
resulting, showed that these metrics and the similarity measures are consistent with
intuition. Consequently, these similarity measures provide the numerical means for the
qualitative classification of fuzzy binary operands to a specific problem.

1.4 Distance and Similarity Measures based on
Generalized Modus Ponens and Generalized
Modus Tollens

1.4.1 Generalized Modus Ponens and Generalized Modus Tollens
Any unqualified conditional fuzzy proposition p of the form:

p : Ifχ isA, thenΥ isB

is determined ∀x ∈ X and ∀y ∈ Y by the formula

R (x, y) = I (A (x) , B (y)) (1.18)

where I denotes a fuzzy implication and R expresses the relationship between the
variables χ and Υ involved in the given proposition. The membership grade represents
(∀x ∈ X and ∀y ∈ Y ) the truth value of the proposition

pxy : Ifχ = x, thenΥ = y.

The truth values of propositions “χ = x” and “Υ = y” are expressed by the member-
ship grades A (x) and B (y), respectively. Consequently, the truth values of proposition
pxy, given by R (x, y), involve a fuzzy implication in which A (x) is the truth value of
the antecedent and B (y) is the truth value of the consequent.
As known, contrary to classical logic, in fuzzy logic the meaning of fuzzy implication

is not unique. So, the question “to select an appropriate fuzzy implication for approx-
imate reasoning, for a particular situation”, converted to “which fuzzy implication is
most appropriate for calculating the fuzzy relation R” in the Eq.(1.18).
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It is obvious that we can derive a criterion for the selection of fuzzy implications
from each fuzzy inference rule that has a counterpart in classical logic. For example,
from the generalized modus ponens and generalized modus tollens.
The Generalized Modus Ponens (GMP for short) has the form [35]:

Rule: if “x is A”, then “y is B”
Fact: “x is A′”
Conclusion: “y is B′”

where A,A′ and B,B′ are fuzzy sets of the universes X and Y , respectively and
A′, B′ are the complements of A,B, respectively.
These fuzzy sets are not necessarily normalized. The rule GMP finds application in

all fuzzy controllers. The GMP should coincide with the classical one in the special
case when A′ = A and B′ = B.
The classical modus ponens is the tautology: (a ∧ (a⇒ b))⇒ b.
Modus ponens states that given two true propositions, ”a” and ”a⇒ b”, the truth

of the proposition ”b” may be inferred.
A criterion for selecting an appropriate fuzzy implication I may be derived from

the requirement that the generalized modus ponens coincide with the classical modus
ponens.

Criterion GMP: Any fuzzy implication suitable for approximate reasoning based on
the GMP should satisfy the equation:

B (y) = sup
x∈X

T [A (x) , I (A (x) , B (y))] .

Another criterion for selecting an appropriate fuzzy implication I may be derived
from the requirement that the Generalized Modus Tollens (GMT for short), coincide
with the classical modus tollens [35]. The GMT has the form:

Rule: if “x is A”, then “y is B”
Fact: “y is B′”
Conclusion: “x is A′”

The classical modus tollens is the tautology: (¬b ∧ (a⇒ b))⇒ ¬a.

Criterion GMT: Any fuzzy implication suitable for approximate reasoning based on
the GMT should satisfy the equation:

n (A (x)) = sup
y∈Y

T [n (B (y)) , I (A (x) , B (y))] , ∀x ∈ X.

Note that, some fuzzy implications are suitable for the generalized modus ponens and
modus tollens. It does not mean, however, that these fuzzy implications are superior
in general. Most papers investigate this problem by first choosing particular classes of
conjunctions and implications and then testing whether the different requirements are
fulfilled. There are lots of possible choices, but still not the “best” one [35, 39].
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1.4.2 Distance Measures based on GMP and GMT
Let two finite fuzzy sets A (x) : X → [0, 1], B (y) : Y → [0, 1]. We assume that
X = {x1, ..., xM} and Y = {y1, ..., yN}, respectively. Fuzzy set A (x) describes the
input and B (y) describes the output of a fuzzy rule A→ B. We translate the fuzzy
rule A→ B, to a fuzzy implication.
So, let A = a1/x1 + a2/x2 + ...+ an/xn and B = b1/y1 + b2/y2 + ...+ bn/yn be

two fuzzy subsets of X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, respectively and
let I be a fuzzy implication.
We construct the vector [n (AI (x1)) , ..., n (AI (xn))], as follows:
Let T be an appropriate t-norm such that the law of modus ponens hold, then:

[n (AI (x1)) , ..., n (AI (xn))] = [n (B (y1)) , ..., n (B (yn))] ◦ I (A (xi) , B (yj)) ,

where ◦ denote the compositional rule max−T . The operation ◦ is equivalent to the
product of two matrices while the multiplication is substituted with the operator T ,
where T is a continuous t-norm, and the aggregation with the operator max.
Below two algorithms are given which select the “most appropriate” fuzzy implica-

tion, from two given fuzzy implications I1, I2 [23]. This aims to insert tools for the
choice of a suitable fuzzy implication, from an existing set of fuzzy implications. In
general, it is a difficult problem to select an appropriate fuzzy implication for approxi-
mate reasoning, for a particular situation.
The first algorithm calculate the distance between the vector “exit” B (yj) and the

vector BI (yi), which results from the Criterion GMP. The second algorithm calculate
the distance between the vector n (A (xi)) and the vector n (AI (xi)), which results
from the Criterion GMT.

A1. Distance Measurement Algorithm based on GMP

Step 1: Calculate the n× n matrixI (A (xi) , B (yj)).

Step 2: Calculate the 1 × n matrix [BI (y1) , ..., BI (yn)], using the compositional
rule max−T , where T is a continuous t-norm.

Step 3: Finally, calculate the distance d (B,BI) between B = [B (y1) , ..., B (yn)]
and BI = [BI (y1) , ..., BI (yn)] using a metric distance between two fuzzy sets.

A2. Distance Measurement Algorithm based on GMT

Step 1: Calculate the n× n matrix I (A (xi) , B (yj)).

Step 2: Calculate the 1× n matrix

[n (AI (x1)) , ..., n (AI (xn))] = [n (B (y1)) , ..., n (B (yn))] ◦ I (A (xi) , B (yj)) ,

using the compositional rule max−T , where T is a continuous t-norm and n is
a strong negation.

Step 3: Calculate the distance d (n (A) , n (AI)) between [n (A (x1)) , ..., n (A (xn))]
and[n (AI (x1)) , ..., n (AI (xn))] using a metric distance between two fuzzy sets.
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So, for every fuzzy implication I we get a pair 〈d (B,BI) , d (n (A) , n (AI))〉. The
values of d (B,BI) and d (n (A) , n (AI)) depend from the degree that the fuzzy im-
plication I satisfies the GMP and GMT, respectively.

1.4.3 Similarity Measures based on GMP and GMT
Similarly arises a similarity measure of fuzzy implications [42].
Let A = a1/x1 + a2/x2 + ...+ an/xn and B = b1/y1 + b2/y2 + ...+ bn/yn be two

fuzzy subsets of X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, respectively. Let, also,
I be a fuzzy implication. Define the matrix of I (A (xi) , B (yj)) as follows:

I (A (xi) , B (yj)) =


I (a1, b1) I (a1, b2) ... I (a1, bn)
I (a2, b1) I (a2, b2) ... I (a2, bn)

. . .

. . .

. . .
I (an, b1) I (an, b2) ... I (an, bn)

 , i, j = 1, ..., n.

We construct the vector [BI (y1) , BI (y2) , ..., BI (yn)] as follows:

[BI (y1) , BI (y2) , ..., BI (yn)] = [A (x1) , A (x2) , ..., A (xn)] ◦ I (A (xi) , B (yj)) ,

where ◦ denote, as above, the compositional rule max−T and T is a continuous
t-norm.
To calculate the degree of similarity, between two fuzzy implications I1 and I2,

based on GMP, as evaluated on a pair of fuzzy sets A, B of the finite universes
X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, respectively, follow the following algo-
rithm:

A3. Similarity Measurement Algorithm based on GMP

Step 1: Calculate the n× n matrix I1 (A (xi) , B (yj)).

Step 2: Calculate the 1 × n matrix BI1 (yi) = [BI1 (y1) , ..., BI1 (yn)], using the
compositional rule max−T where T is a continuous t-norm.

Step 3: Calculate ‖BI1 (yi)‖, where ‖�‖ denote a operator-norm on X.

Step 4: Calculate ‖BI2 (yi)‖, repeating Steps 1-3 for I2.

Step 5: Finally, calculate min
(
‖BI1‖
‖BI2‖

,
‖BI2‖
‖BI1‖

)
So, the degree of similarity between two fuzzy implications I1 and I2 as evaluated
over a pair of fuzzy sets A, B of the finite universes X = {x1, x2, ..., xn} and Y =
{y1, y2, ..., yn}, respectively, is defined as:

S (I1, I2 : A,B) = min
(
‖BI1‖
‖BI2‖

,
‖BI2‖
‖BI1‖

)
,
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where, ‖�‖ denotes an operator-norm on X, and BI1 , BI2 are the vectors which are
obtained from Step 3 and Step 4 of the Algorithm A3.
The above defined measure S (I1, I2 : A,B), where I1, I2 are fuzzy implications and

A,B finite fuzzy sets, is a similarity measure, because it satisfies the conditions:

(i) 0 ≤ S (I1, I2 : A,B) ≤ 1,

(ii) S (I1, I2 : A,B) = S (I2, I1 : A,B),

(iii) If I1 = I2 then S (I1, I2 : A,B) = 1.

1.5 Conclusions
A unified approach in constructing distance and similarity measures using fuzzy im-
plications was presented in the previous sections. The proposed methodology exhibits
a high degree of flexibility since it enables the incorporation of any fuzzy implication
while it can be applied to any type of fuzzy sets (intuitionistic fuzzy sets, interval-
valued fuzzy sets, etc.). The resulted measures satisfy the main properties of a metric
and thus are theoretically correct, while their utility in specific applications constitutes
the subject of future research.
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