
CHAPTER 5

Fuzzy Set Similarity using a Distance-Based Kernel
on Fuzzy Sets

Jorge Guevara, Roberto Hirata Jr. and Stephane Canu

Similarity measures computed by kernels are well studied and a vast literature is
available. In this work, we use distance-based kernels to define a new similarity mea-
sure for fuzzy sets. In this sense, a distance-based kernel on fuzzy sets implements a
similarity measure for fuzzy sets with a geometric interpretation in functional spaces.
When the kernel is positive definite, the similarity measure between fuzzy sets is an
inner product of two functions on a Reproducing kernel Hilbert space. This new view
of similarity measures for fuzzy sets given by kernels leverages several applications in
areas as machine learning, image processing, and fuzzy data analysis. Moreover, it
extends the application of kernel methods to the case of fuzzy data. We show an
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application of our method in a kernel hypothesis testing on fuzzy data.

Keywords - Kernel on fuzzy sets, similarity measures on fuzzy sets, kernel methods,
kernel hypothesis testing, fuzzy data analysis, fuzzy pattern recognition, fuzzy statistics
and data analysis.

5.1 Introduction
Fuzzy sets similarity is an important topic of research due to its several theoretical and
practical applications [5, 9]. We will use a well-known concept from kernel methods
[1, 4, 29], the kernel, to define a new class of similarity measures between fuzzy sets .
Kernels are real-valued functions defined on a non-empty space, and are mainly used to
define similarity measures between elements in that space. Whether they are positive
definite or indefinite functions, they always have a geometrical interpretation either in
Reproducing Kernel Hilbert Space (RKHS)[4] or in more general spaces like Krein or
pseudo-Euclidean spaces[25].
The main contribution of this work is to show how to engineer kernels on fuzzy

sets [14, 15, 16], using some well-known distances between fuzzy sets. The advantage
of our approach is that it is possible to have a geometrical interpretation of the simi-
larity measure between fuzzy sets. Similarity measures between fuzzy sets can be seen
as inner products of two functions in a RKHS implemented by positive definite kernels.
On the other hand, more general kernels like symmetric kernels are implemented as
an evaluation of functions by symmetric and bilinear forms in more general functional
spaces.
Our main idea to design kernels on fuzzy sets rely on plugging a distance between

fuzzy sets into the kernel definition. Kernels obtained in this way are called, distance
substitution kernels [18]. If the distance between fuzzy sets is a metric, the resulting
kernel on fuzzy sets will be positive definite, on the other hand if the distance is given
by pseudo-metrics or semi-metrics, the final kernel will be a symmetric kernel.
Successful applications of kernels on fuzzy sets will be applications where fuzzy sets

are used to model imprecise or vague information, and part of the task to be solved,
requires the estimation of a similarity measure between fuzzy sets. Examples of such
applications are those within supervised and unsupervised machine learning tasks over
fuzzy data. i.e. the sample contains observations given by fuzzy sets. In the same
way, those kernels could be used in the analysis of heterogeneous data containing fuzzy
variables. In this sense, this work describes an experiment on kernel hypothesis testing
using heterogeneous data. This data has a subset of variables containing vague or
linguistic information, which we modelled with fuzzy sets.
To conclude this section, estimating a similarity measure between fuzzy sets using

kernels is important for several reasons: 1) it allows us to analyse imprecise data using
fuzzy set and kernel methods. This will improve and give a new methodology for the
analysis of fuzzy data in areas like data science, data mining and machine learning; 2)
it can be an important tool in several areas of fuzzy mathematics, where, thanks to
the theory behind kernels, fuzzy sets similarities can be interpreted from a geometrical
point of view; 3) it will have several practical applications, for example, computing a
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similarity value between fuzzy regions of pixels in image processing, or clustering fuzzy
data on data mining.
The rest of the paper is structured as follows. We start in Section 5.2, giving a brief

description of reproducing kernels, and showing how positive definite kernels induce a
metric in a space of functions. This section also presents a class of kernels called as
distance substitution kernels. Section 5.3 describes how to use distances between fuzzy
sets to define a new class of kernels on fuzzy sets. Section 5.4 shows an experimental
evaluation of the proposed similarity measures in a kernel hypothesis task using a real
dataset. Finally, we present some conclusions in Section 5.5.

5.2 Reproducing Kernels
Kernels are real-valued functions1 and they are widely used as similarity measures
between objects or entities [1, 4, 29]. Given two elements x and y in a non-empty set
X , a similarity measure between them can be estimated via a kernel:

k : X × X → R (5.1)
(x, y) 7→ k(x, y). (5.2)

A value k(x, y) close to zero means that the two elements are not so similar. On the
other hand, the higher the value k(x, y) is, the more similar x is to y.
If k is positive definite, that is, if k satisfies the condition that:

N∑
i

N∑
j

cicjk(xi, xj) ≥ 0, (5.3)

for every possible combination of values ci, cj ∈ R, for any elements xi, xj ∈ X and
for all N ∈ N, then the kernel evaluation has a geometric interpretation in a high
dimensional Hilbert Space called as Reproducing Kernel Hilbert Space (RKHS). In
this sense, a similarity measure between two elements in X computed by a positive
definite kernel k is actually an inner product of two functions in a RKHS:

k(x, y) = 〈φx, φy〉H, (5.4)

where φx and φy are two functions in the RKHS H associated to the objects x and y
in the set X . Functions φx and φy are the representative functions of x and y, and
are mappings of the form:

φx : X → R (5.5)
y 7→ φx(y) = k(x, y). (5.6)

In this sense, positive definite kernels define similarity measures for objects belonging
to non-vector spaces, as is the case of the spaces given by sets of graphs, strings, logic
predicates, probability measures, fuzzy sets, etc; with an geometrical interpretation in
H. For a more deeper study of kernel methods we refer the books [4, 29].

1 There are more general definitions of kernels but for our purposes we will only use real-valued kernels
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5.2.1 Distance Induced by Positive Kernels
In what follows, we will explain how positive definite kernels induce a distance in a
RKHS. For that purpose, we will use the term distance to denote indistinctly a metric,
or a pseudo-metric, or even a semi-metric.

Definition 1 (Metric, pseudo-metric and semi-metric). A metric on a non-empty set
Ω is a function: d : Ω× Ω→ R+

0 , satisfying:

1. d(x, x′) ≥ 0,∀x, x′ ∈ Ω (non negativity)

2. d(x, x′) = 0 iff x = x′ (reflectivity)

3. d(x, x′) = d(x′, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

We say that d is a pseudo-metric if it satisfies the axioms 1, 3, 4 and additionally
satisfies d(x, x) = 0,∀x ∈ Ω and d(x, x′) = 0 for some values x 6= x′. If d satisfies
the axioms 1, 2 and 3, it is a semi-metric.
In a RKHS H with reproducing kernel k, by virtue of (5.4), it is possible to compute

the squared norm in H using kernels:

‖φx − φy‖2H = 〈φx, φx〉H − 2〈φx, φy〉H + 〈φy, φy〉H
= k(x, y)− 2k(x, y) + k(y, y). (5.7)

It is important to notice that not only positive definite kernels induce metrics in H.
There is another important class of kernels, the Conditionally Positive Definite kernels
(CPD) that are defined in the same way as Eq.(5.3), but with the restriction that the
subset {c1, . . . , ci, . . . , cN} ⊂ RN satisfies the condition

∑N
i ci = 0.

If k′ is a CPD kernel, (by Proposition 3 in [28] and Lemma 2.1 in [3]), the following
kernel is positive definite:

k(x, y) = 1
2
(
k′(x, y)− k′(x, x0)− k′(x0, y) + k′(x0, x0)

)
, (5.8)

where x, y, x0 are elements of the domain. Now, if φx, φy ∈ H are induced by a kernel
as the one given by (5.8), then (??) could be rewritten as2:

‖φx − φy‖2H = −k′(x, y) + 1/2(k′(x, x) + k′(y, y)). (5.9)

It is still possible to relax the condition of positive definiteness for kernels by only
requiring symmetric kernels to be used to define distances. The geometric interpreta-
tion in that case is given by linear spaces with symmetric bilinear forms3. Of course,
such induced distances could violate the definition of metric, nevertheless they would
induce zero-diagonal symmetric distances. Symmetric and non-symmetric kernels had

2 See Proposition 3.2 in [3] for details.
3 If k is symmetric, then k(x, x′) = Q(k(., x), k(., x′)), where Q is a symmetric and bilinear form, with

reproducing property Q(k(., x), f) = f(x). See Proposition 6 in [28] for details.
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been used in machine learning problems with state-of-the-art results [17] [19, 22, 30].
Some work has been done to give a geometrical interpretation for indefinite kernels in
pseudo-euclidean spaces [17, 26] and Krein spaces [23]. In such spaces bilinear forms
are not necessarily positive definite and norms do not define metrics.

5.2.2 Distance Substitution Kernels
This class of kernels are based on the idea of using a distance inside the kernel def-
inition [18], and are motivated by the distance based learning paradigm [26]. That
is, the task of learning statistical models from data, where the observations are not
given explicitly but instead a distance evaluation over pairs of observations is known
beforehand. Following Definition 1, if a metric d(x, y) is defined by ‖φx−φy‖H using
some positive definite kernel k, i.e., d is an isometric embedding onto H, then the
following expressions are positive definite kernels:

1) 〈x, y〉x0
d , 2)

(
α+ γ〈x, y〉x0

d

)β
, 3) exp(−γd(x, y)2), (5.10)

where α, γ ∈ R+, β ∈ N, and

〈x, y〉x0
d def

=

〈
(φx − φx0), (φy − φx0)

〉
H (5.11)

= 1
2
(
‖(φx − φx0)‖2H + ‖(φy − φx0)‖2H − ‖φx − φy‖2H

)
(5.12)

= 1
2
(
d(x, x0)2 + d(y, x0)2 − d(x, y)2) (5.13)

By the definition of a CPD kernel, it is possible to prove that −d(x, y)p, p ∈ [0, 2]
is a CPD kernel. Note, that φx0 ∈ H is an arbitrary origin. Relaxing the definition
for d and allowing the use of pseudo-metrics and semi-metrics, the kernels mentioned
are no longer positive definite, instead they are symmetric kernels. The geometric
interpretation is guaranteed in pseudo-Euclidean spaces or Krein spaces [7, 19, 22].

5.3 Kernels on Fuzzy Sets via Fuzzy Distances
This section describes a new class of kernels that actually are distance substitution
kernels, where the distance function is a distance between fuzzy sets. That is, they
are formulated by plugging a distance between fuzzy sets into the kernel definition.

5.3.1 Kernels on fuzzy sets
Similarity measures for fuzzy sets using kernels have two main advantages. The first
one is related to the geometrical interpretation of the similarity measure in a space of
functions. In this way, a positive definite kernel on fuzzy sets could induce a topology
in the set of all the fuzzy sets. Another advantage is that kernels on fuzzy sets could be
used in a modular fashion in kernel methods like support vector machines, kernel PCA,
Gaussian process and so on. Such advantages could leverage the development of many
applications in several areas of research where the observational data contain variables
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that are better represented by fuzzy sets or inclusively data whose observations are
naturally represented by fuzzy sets.
Kernels on fuzzy sets are mappings of the form [14, 15, 16]:

k : F(Ω)×F(Ω) → R (5.14)
(X,Y ) 7→ k(X,Y ), (5.15)

where F(Ω) denotes the set of fuzzy sets on Ω, that is

F(Ω) = {X | X : Ω→ [0, 1]}, (5.16)

We say that the value X(x), x ∈ Ω, is the membership degree of x in the fuzzy set
X.

5.3.1.1 Distances on fuzzy sets induced by kernels

Distances between fuzzy sets could be formulated using kernels on fuzzy sets as follows:

D(X,Y ) = k(X,Y )− 2k(X,Y ) + k(Y, Y ), (5.17)

and we will call such a distance as a kernel-based distance over fuzzy sets.
An important consequence of Eq.((5.17)) in fuzzy set theory is that if the kernel on

fuzzy sets is positive definite, then Eq.((5.17)) give us a way to define a new set of
metrics over fuzzy sets. In this sense, D(X,Y ) is interpreted as being ‖φX − φY ‖ in
the RKHS H induced by the kernel k.
More general kernels on fuzzy sets can be used to define distances on fuzzy sets.

However, the resulting distances would not be metrics. Nevertheless, it is still possible
to get a zero-diagonal distance on fuzzy sets with symmetric kernels.

5.3.2 A distance-based kernel on fuzzy sets
Going in the other direction, if a metric on fuzzy sets (in the sense of Definition 1) is
given, then a positive definite kernel on fuzzy sets could be easily constructed from it,
using the distance substitution kernel concept. That is, if D is a metric, the following
kernels on fuzzy sets are positive definite

K(X,Y ) = 〈X,Y 〉x0
D (5.18)

K(X,Y ) =
(
α+ γ〈X,Y 〉X0

D

)β (5.19)
K(X,Y ) = exp(−γD(X,Y )2), (5.20)

where α, γ ∈ R+, β ∈ N, and

〈X,Y 〉X0
D def

=

1
2
(
D(X,X0)2 +D(Y,X0)2 −D(X,Y )2) (5.21)

All of those kernels will be kernels on fuzzy sets induced by distances on fuzzy sets
and we will refer to them as distance-based kernels on fuzzy sets.
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If D is either a pseudo-metrics or a semi-metrics on fuzzy sets, function D still
could be used to define kernel on fuzzy sets. Of course, those kernels are not positive
definite but a geometrical interpretation could be given in pseudo-Euclidean spaces or
Krein spaces. Furthermore, non-positive kernels have been used in several applications
on machine learning problems in the past few years. See for example references [2, 7,
19, 22]
Some popular distances between fuzzy sets that could induce new kernels on fuzzy

sets are given in Table 5.1. See [5, 8, 10, 27] and references therein for details.

Table 5.1: Popular distaces on fuzzy sets.

D(X,X ′) Type of distance[ ´
x∈Ω |X(x)−X ′(x)|p

]1/p
pseudo-metric, p ∈ N

supx∈Ω |X(x)−X ′(x)| metric∑
x∈Ω |X(x)−X ′(x)|∑
x∈Ω |X(x) +X ′(x)| metric, discrete case

|E(X)− E(X ′)| pseudo-metrica∑
x∈Ω[Dx(X,X ′) +Dx(X ′, X)] semi-metricb

1−
∑
x∈Ω min[X(x), X ′(x)]∑
x∈Ω max[X(x), X ′(x)] semi-metric

1−
∑
x∈Ω

min[X(x), X ′(x)]
max[X(x), X ′(x)] semi-metric

1−maxx∈Ω min[X(x), X ′(x)] pseudo-metric´ 1
0 D(Xα, X

′
α)dα Xα is the α-cut set [20], and D is any metric on sets∑

x,x′∈Ω d(x, x′) min[X(x), X ′(x′)]∑
x,x′∈Ω min[X(x), X ′(x′)] metric

a E(X) = −K
∑
x∈Ω[X(x) logX(x) + (1−X(x)) log(1−X(x))]

b Dx(X,X ′) = X(x) log X(x)
X ′(x) + (1−X(x)) log (1−X(x))

(1−X ′(x))

5.4 Experiments
This section presents an experimental study using the kernels presented in this work
on a hypothesis testing task. The dataset used in this experiment is a real dataset of
cancer prognosis and, following Section 5.4.2.1, some variables or features are described
by fuzzy sets rather than using specific values. We used a kernel two-sample test [12],
with kernels on fuzzy sets to find out whether two samples of points follow the same
distribution4.

4 The code used in the experiments can be found at https://github.com/jorjasso/
Two-sample-kernel-test-with-fuzzy-kernels.

https://github.com/jorjasso/Two-sample-kernel-test-with-fuzzy-kernels
https://github.com/jorjasso/Two-sample-kernel-test-with-fuzzy-kernels
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5.4.1 Kernel Hypothesis Testing
Kernels had been used to perform statistical tests to decide if two samples were drawn
from the same or different distributions [6, 11, 12, 13]. In this experiment we used
the kernel two-sample test approach whose central concept is the Maximum Mean
Discrepancy (MMD) [12].
Definition 2 (MMD). Let F be a set of functions f : Ω → R. Let X and Y be
two random variables on Ω distributed according to the probability measures P and
Q. The MMD is defined as:

MMD[F ,P,Q] = sup
f∈F

(
EX∼P[f(X)]− EY∼Q[f(Y)]

)
, (5.22)

where EX∼• is the expectation of the random variable X distributed according to •.
For practical purposes, it is better to compute the square of the MMD in a unit

sphere of a RKHS H with kernel k. For a detailed discussion about the derivation of
the MMD in a RKHS see [12].

MMD2[F ,P,Q] =
∥∥EX∼P[φX]− EY∼Q[φY]

∥∥2
H.

Given the samples sX = {x1, . . . , xm} e sY = {y1, . . . , yn} distributed according to
P and Q, respectively. An unbiased empirical estimator for MMD is given by (Lemma
6 from [12]):

MMD2
u[F , sX , sY ] = 1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)−
2
mn

m∑
i=1

n∑
j=1

k(xi, yj)

+ 1
n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj) (5.23)

Using the samples sX and sY defined above, it is possible to use the MMD to test
whether the null hypothesis H0 : P = Q or the alternative hypothesis: HA : P 6= Q
hold. To achieve that, the evaluation of the metric MMD is compared against a
threshold ε. That is, if MMDu[F , sX , sY ] > ε, it is possible to say that the null
hypothesis is rejected. Otherwise, there is not evidence to reject the null hypothesis.
A Type I error occurs when H0 is rejected in spite of the null hypothesis being true. A
Type II error occurs when the null hypothesis is not rejected in spite of the distributions
being different. The level of the test, denoted by α, is an upper bound of the Type I
error and, of course, it can be used to estimate the value of the threshold ε. There are
several methods to achieve that, see Section 5.4 and 5 from [12]. In our experiments,
we estimated the threshold using bootstrap.

5.4.2 Two-sample Test with Kernels on Fuzzy Sets
In this section, we first describe the dataset used in the experiments and we point the
variables of the dataset that contain imprecise values given by linguistic terms. Later,
we show a fuzzification methodology to model the imprecise values of such variables
and we finish reporting some comparative results on fuzzy sets against classical kernels.
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Table 5.2: Variables of the Breast Cancer Dataset.

Variable Values

class no-recurrence-events, recurrence-events
age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
menopause lt40, ge40, premeno.
tumor-size 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
inv-nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
node-caps yes, no.
deg-malig 1, 2, 3.
breast left, right.
breast-quad left-up, left-low, right-up, right-low, central.
irradiat yes, no.

5.4.2.1 Breast cancer dataset

The Breast Cancer dataset [21]5, provided by the Institute of Oncology at the Univer-
sity Medical Center in Ljubljana, Yugoslavia, has information of 286 patients, divided
in two categories: 201 patients with no recurrence events of breast cancer in the first
five years after the surgery, and 85 patients that show recurrence events of breast
cancer in the same period of time.
The dataset has ten variables shown in Table 5.2. Note that the variables age,

menopause, tumor-size and inv-node contain imprecise values.

5.4.2.2 Fuzzification of the variables of the dataset

Table 5.2 shows that the dataset is heterogeneous, because it contains variables with
precise and non-precise values. For the variables age, menopause, tumor-size, and inv-
nodes, we used fuzzy sets to model or encode the imprecise values. In what follows,
we will explain how the fuzzification process of those variables was performed with
imprecise values.
The variable age was modeled with fuzzy sets using trapezoidal membership func-

tions given by:

X(x; a, b, c, d) =



0, x ≤ a
x− a
b− a

, a ≤ x ≤ b
1, b ≤ x ≤ c

d− x
d− c

, c ≤ x ≤ d
0, d ≤ x

(5.24)

After analyzing the range of values of this variable, we used the following rule to
define the parameters a, b, c, d. Let l and r be the leftmost and the rightmost values
of each interval (see Table 5.2), then a = l − 5, b = l, c = r, d = r + 5. The reason
behind this choice is to allow some overlapping by the membership functions. Figure
5.1 shows the trapezoidal fuzzy sets used to represent the values of the variable age.

5 Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
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Figure 5.1: Fuzzification of variable age with trapezoidal fuzzy sets.

In the case of the variable menopause, we used a fuzzy set with a Z-shaped mem-
bership function to represent the linguistic term lq40 (less than forty years old), that
is:

X(x; a, b) =



1, x ≤ a

1− 2
(x− a
b− a

)2
, a ≤ x ≤ a+ b

2
2
(x− a
b− a

)2
,

a+ b

2 ≤ x ≤ b
0, x ≥ b,

(5.25)

where a = 40 and b = 45. Figure 5.2 shows this fuzzy set as a red curve. We used
a fuzzy set with a S-shaped membership function to model the linguistic value ge40
(greater than forty years old), that is:

X(x; a, b) =



0, x ≤ a

2
(x− a
b− a

)2
, a ≤ x ≤ a+ b

2
1− 2

(x− a
b− a

)2
,

a+ b

2 ≤ x ≤ b
1, x ≥ b,

(5.26)

where a = 35 and b = 40. Figure 5.2 shows this fuzzy set as a blue curve. To represent
the linguistic value premeno, we used a fuzzy set with a Gaussian membership function,
that is:

X(x;σ, c) = exp
(
− (x− c)2

2σ2

)
(5.27)

where c = 45 and σ was estimated to be (50 − 40)/(2
√

2 log 2) 6. Figure 5.2 show
this fuzzy set as a yellow curve.
The variable tumor-size is modeled by three kinds of fuzzy sets. We used a Z-shaped

fuzzy set with parameters a = 0 and b = 9 and a S-shaped fuzzy set with parameters
a = 50 and b = 59 to model the extreme values of the variable. Several Gaussian
fuzzy sets with parameters c = (l+ r)/2 and σ = (r− l)/(2

√
2 log 2)) were also used

to model the other values. Figure 5.3 shows the fuzzy sets used to model this variable.
Finally, we modeled the variable inv-nodo in the same way as the variable tumor-

size. We used a Z-shaped fuzzy set with parameters a = 0 and b = 5, a S-shaped
fuzzy set with parameters a = 33 and b = 39, and several Gaussian fuzzy sets with

6 This value is known as full width at half maximum.
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Figure 5.2: Fuzzification of the variable menopause with Gaussian (yellow), S-shaped
(blue) and Z-shaped (red) fuzzy sets.
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Figure 5.3: Fuzzification of the variable tumor-size, with S-shaped (leftmost), Z-
shaped (rightmost) and Gaussian fuzzy sets.

parameters c = (l + r)/2 and σ = (r − l)/(2
√

2 log 2)). Figure 5.4 shows the fuzzy
sets used to model this variable.

0 5 10 15 20 25 30 35 40
0

0.5

1

Figure 5.4: Fuzzification of the variable inv-nodes with with S-shaped (leftmost), Z-
shaped (rightmost) and Gaussian fuzzy sets.

The other variables of this dataset are categorical variables. Table 5.3 shows those
variables with their respective sets of values. It also shows the discrete values that we
used to represent such values.
For experimental purposes, we also present a crisp version of this dataset. To do

that, we take the mean value of each interval for the case of the variables age, tumor-
size and inv-nodes. We set the variable menopause to have one of the values {−1, 0, 1}
to represent its linguistic values. The values of the other variables are the same of
Table 5.3.
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Table 5.3: Categorical variables and their values node-caps, deg-malig, breast e
irradiat.

Variable Values Discrete values
class no-recurrence-events 1

recurrence-events -1
node-caps yes 1

no -1
deg-malig 1 −1

2 0
3 1

breast left 1
right -1

breast-quad left-up −1
left-low -0.5
right-up 0
right-low 0.5
central 1

irradiat yes 1
no -1



Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets 115

5.4.2.3 Experimental setting

In order to use the MMD with kernels on fuzzy sets over the fuzzy version of the breast
cancer data we performed two experiments.
Experiment I: The purpose of this experiment is to verify if the MMD is able to

correctly identify if a pair of samples were drawn from two different distributions. We
set the level of the test α to 0.05. We applied the test one hundred times over pairs
of samples, each sample has 25 observations drawn from each of the two different
distributions: patients showing breast cancer recurrence or patients without breast
cancer recurrence. For each time the test is applied, we count if the samples come
from the same distribution by counting the number of times the null hypothesis is
rejected. In order to get the mean and variance, we performed the above procedure
250 times.
Experiment II: In this experiment, we used the same procedure as before but this

time each pair of samples were chosen from the same category (recurrence, or non
recurrence). The category whereby the samples were chosen was randomly selected.
Therefore, we estimated the number of times the test is able to correctly identify if
the observations were drawn from the same categories, or not.
For the crisp dataset we used the linear kernel: k(x, y) = xTy, x, y ∈ RD, and we

denoted this kernel by klin. We also used the RBF kernel: k(x, y) = exp(−γ‖x −
y‖2), x, y ∈ RD, γ ∈ R+, denoted by kRBF . The γ parameter was estimated using
the median heuristic, that is, we compute the median of the all possible distances
between observations in the dataset and we set γ to be the inverse of this value.
For the fuzzified dataset, we decided to use a convex combination of kernels, as not

all the variables of the fuzzy dataset are fuzzy sets (see Table 5.2):

k(x, y) =
K∑
i=1

βiki(xi, yi), (5.28)

where βi ≥ 0 and
∑
i βi = 1. The advantage of this strategy is that different kernels

can be used in different subsets of variables containing values from different domains.
The resulting kernel is positive definite because any linear combination of kernels is
also a positive definite kernel. Another advantage is that it is possible to optimize the
values βi from data. We denoted by k∩ + klin, the kernel resulting from the convex
combination of linear kernels on crisp variables and the intersection kernel on fuzzy
sets over the fuzzy variables age, menopause, tumor-size and inv-nodes[16]. For the
intersection kernel on fuzzy sets, we used the minimum T-norm operator. The resulting
kernel was used in the MMD. Notice that this kernel has not bandwidth parameter,
then is not necessary to perform a search to choose some optimal parameter.
Another convex combination of kernels, denoted by k∩ + kRBF , was built by using

the RBF kernel for the crisp features and the intersection kernel on fuzzy set for the
fuzzy variables. The RBF kernel parameter was given by the median heuristic but only
considering the crisp dimensions.
Finally we used a convex combination of a RBF kernel for the crisp variables and a
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distance substitution kernel on fuzzy sets with the following metric on fuzzy sets

D(X,X ′) =
∑
x∈Ω |X(x)−X ′(x)|∑
x∈Ω |X(x) +X ′(x)| , (5.29)

we used this metric on fuzzy sets to get the following kernel on fuzzy sets:

KD(X,X ′) = exp(−λD(X,X ′)2) (5.30)

The kernel parameter was computed by the median heuristic over the crisp versions of
the fuzzy variables. We denoted this kernel by KD + kRBF .

5.4.3 Results
Figure 5.5 shows a plot of Type II error against the level of the test α. Notice that
the kernel kD + kRBF has lower Type II error than the other ones, for several choices
of α.
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Figure 5.5: Level of the test α vs. Type II error using a MMD with five different
kernels.

Table 5.4 shows the results of the tests for α = 0.05. The first column shows
the type of the experiment. The second column shows the condition of the samples.
In the third column the word accepted must be understood as there is not evidence
to reject the null hypothesis, and the word rejected must be understood as the null
hypothesis is rejected. The other columns show the results for the kernels mentioned
in Section 5.4.2.3. The first row of the table shows if there is not evidence to reject
the null hypothesis, that is, if the two samples were drawn from the same distribution
(the same category), the test correctly says that it is the case. We observed that
all the kernels perform very similarly. The second row shows the case when the null
hypothesis is rejected despite of being true. That is called a Type I error. We observed
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Table 5.4: Results for α = 0.05. The null hypothesis is denoted by H0 .

Exp. Condition H0 klin kRBF k∩ + klin k∩ + kRBF kD + kRBF

II Same accepted 97.63 97.98 97.38 97.51 97.92
II Same rejected 02.37 02.02 02.62 02.49 02.08
I Different accepted 73.79 73.68 92.78 93.85 61.09
I Different rejected 26.21 26.32 07.22 06.15 38.91
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Figure 5.6: Type I error.

that all the tests have a lower Type I error, because this value is bounded by the level
of the test.
The third row is the case where the test wrongly says that both samples were drawn

from the same distribution (there is not evidence to reject the null hypothesis) in
spite of being drawn from two different ones. Hence the test says that the alternative
hypothesis is false despite of being true. This kind of error is called a Type II error, as
the Type I error is bounded by the level of the test, the Type II error gives us a way to
measure the relevance of the kernels in the hypothesis testing task. We observed that
the kernel on fuzzy sets KD + kRBF is the best of all of them achiving lower Type II
error for this dataset. One possible explanation for this is that this kernel exploit the
imprecise information given by the fuzzy variables better than the others, in the sense
that gives a more suited similarity measure for this kind of observations.
The fourth row of the table shows the case when the test says that the alternative

hypothesis is true, when it is really true. That is the null hypothesis is rejected. The
kernels k∩ + klin and k∩ + kRBF perform badly and the kernel KD + kRBF has a
higher value than the others. To conclude, we also report in Fig.(5.6) and Fig.(5.7),
the Type I and II errors in terms of boxplots for α = 0.05.
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Figure 5.7: Type II error.

5.5 Conclusions and Further Research

Similarity measures between fuzzy sets are very important because of their several
applications. We proposed a new kind of similarity measure based on the idea of
plugging fuzzy distances into kernel definitions. The advantage of this approach is
that if the distance is a metric then the resulting similarity measure between fuzzy sets
has a geometric interpretation in a RKHS and, therefore, it is possible to use kernels
to analyze datasets whose variables are better modeled using fuzzy sets. In the case
of more general distances like pseudo-metrics and semi-metrics, it is still possible to
have a geometric interpretation in Krein or pseudo-Euclidean spaces. The resulting
kernels will be symmetric kernels, nevertheless literature shows that those kernels are
still valid in machine learning tasks, given good experimental results. We also showed
an experimental evaluation of kernels on fuzzy sets in the hypothesis testing task in a
real dataset. As we noticed, it was possible to get a better performance using a linear
combination of fuzzy kernels and the other ones for this task. We believed that this
happened because fuzzy sets encode better the imprecise information provided by some
variables of this dataset, and kernels on fuzzy set are better suited to find out a good
similarity measure between this fuzzy sets. Finally, we think that it is possible to apply
this methodology to solve other practical problems where variables or observations
are given by fuzzy sets and it is necessary to use a similarity measure to cope with
the problem. As a further area of research, we believe that is possible to extend the
distance-based kernel-on fuzzy sets to more general concepts as intuitionistic fuzzy
sets [24] and hesitant fuzzy sets by simply plugging a distance definition between
intuitionistic or hesitant fuzzy sets (see [24, 31]) into the kernel definition. [31].
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