
CHAPTER 3

Derivation of Moment Invariants

Huazhong Shu, Limin Luo and Jean Louis Coatrieux

In most computer vision applications, the extraction of key image features, what-
ever the transformations applied and the image degradations observed, is of major
importance. A large diversity of approaches has been reported in the literature. This
chapter concentrates on one particular processing frame: the moment-based methods.
It provides a survey of methods proposed so far for the derivation of moment invari-
ants to geometric transforms and blurring e�ects. Theoretical formulations and some
selected examples dealing with very di�erent problems are given.
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3.1 Introduction

Nowadays, gray level and color images play a central role in many research �elds going
from biology, medicine, chemistry, physics up to archeology, geology and others. In
the sole engineering area, to take a few examples, robot control, remote sensing, road
tra�c analysis, enhanced virtual reality, compression and watermarking are concerned.
All these �elds required tools for extracting, quantifying and interpreting the infor-
mation they convey. Such tools and methods refer to image processing or computer
vision at large.

They can be classi�ed in a general way according to low-level methods (bottom-up
approaches operating on edges or regions) or high-level techniques (top-down ap-
proaches driven by models of objects and scenes). These image analyses depend on
the applications to face. Image acquisition is a �rst and critical step determining the
quality of the input data and therefore the performance of the analysis that will be
carried out. A number of di�erent physics are available to get the observations re-
quired: for instance optical (including infrared camera), X-ray and acoustic sensors.
Speci�c procedures must be designed to generate 2D and 3D images before consider-
ing any analysis: a good example is found with Computer Tomography (CT Scanner)
in medicine, where reconstruction from projection data has to be performed �rst.

Then, and depending on the nature of the data and the targets, key steps should be
addressed among which object boundary detection, object segmentation, matching and
registration, pattern recognition, shape modeling, texture labeling, motion tracking,
classi�cation, etc. Even if major progresses have been recognized over the past decades
by the emergence of very diverse methodological frames (for instance, level-set and
graph-cut techniques aimed at object segmentation), signi�cant di�culties remain
when the images are too noisy or degraded, the object contrasts too low, when we
have to face to deformable objects or to important occlusions.

In this very dense landscape of methods and problems [34, 23], the description of ob-
ject invariants for point-of-interest detection and matching, registration, image forgery
detection, image indexing-retrieval and more widely for pattern recognition, is of high
signi�cance. They �rst have to deal with geometric transformations such as transla-
tion, scale and rotation, and more generally to a�ne transformation. Image blurring
is another major concern. Blur may occur due to wrong focus, object/camera motion.
The performance of any computer vision system, whatever their target application,
relies on the speci�c feature extraction technique used.

A popular class of invariant features is based on the moment techniques. As noted by
Ghorbel et al. [5, 14], the most important properties to assess by the image descriptors
are: (1) invariance against some geometrical transformations; (2) stability to noise, to
blur, to non-rigid and small local deformations; and (3) completeness. The objective
of this chapter is to present a comprehensive survey of the state-of-the-art on the
moment invariants to geometric transformations and to blur in pattern recognition.
Proofs of theorems are referred to already published papers. Some illustrations on
di�erent applications will be also provided along the chapter.
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3.2 Derivation of Moment Invariants to Geometric

Transformations

In the past decades, the construction of moment invariants and their application to
pattern recognition have been extensively investigated. They can be classi�ed into
three categories: (1) Normalization techniques [17, 21]; (2) Indirect methods [20,
11]; (3) Direct approaches. It is well known that the normalization process can be
used to achieve the invariance. However, such a process may lead to inaccuracy
since the normalization of the images requires re-sampling and re-quantifying. The
indirect methods make use of geometric moments or complex moments to achieve the
invariance, but they are time expensive due to the long time allocated to compute the
polynomial coe�cients when orthogonal moments are concerned. In order to improve
the accuracy and to speed up the computational e�ciency, many direct algorithms
have been reported in the literature. Chong et al. [3] proposed a method based on
the properties of pseudo-Zernike polynomial to derive the scale invariants of pseudo-
Zernike moments. A similar approach was then used to construct both translation
and scale invariants of Legendre moments [4]. The problem of scale and translation
invariants of Tchebichef moments has been investigated by Zhu et al. [43]. Discrete
orthogonal moments such as Tchebichef moments yield better performance than the
continuous orthogonal moments, but the rotation invariants are di�cult to derive. To
overcome this shortcoming, Mukundan [19] introduced the radial Tchebichef moments,
which are de�ned in polar coordinate system, to achieve the rotation invariance. It was
shown that the methods reported in [3, 4, 43, 19] perform better than the classical
approaches such as image normalization and indirect methods. However, it seems
di�cult to obtain the completeness property by the above mentioned methods since
no explicit formulation is derived for moment invariants.

A set of invariant descriptors is said to be complete if it satis�es the following
property: two objects have the same shape if and only if they have the same set of
invariants. A number of studies have been conducted on completeness. Flusser et al.
proposed a complete set of rotation invariants by normalizing the complex moments
[6, 7]. The construction of a complete set of similarity (translation, scale and rotation)
invariant descriptors by means of some linear combinations of complex moments has
been addressed by Ghorbel et al. [14].

This �rst part of the chapter will review the ways to construct a complete set of
orthogonal moments de�ned in polar coordinate system, and how to derive a set of
moment invariants with respect to a�ne transformation.

3.2.1 Derivation of a Complete Set of Orthogonal
Fourier�Mellin Moment Invariants

It is well known that the moments de�ned in polar coordinate system including the com-
plex moments, Zernike moments, pseudo-Zernike moments [24], orthogonal Fourier-
Mellin moments [28], Bessel�Fourier moments [36], can easily achieve the rotation
invariance by taking the module of the moments. However, the moment magnitudes
do not generate a complete set of invariants. In this section, we present a general



60 H. Shu et al.

scheme to derive a complete set of radial orthogonal moments with respect to simi-
larity transformation. We take the orthogonal Fourier�Mellin moments (OFMMs) as
an example for illustration [39].
The 2D OFMM, Zfpq, of order p with repetition q of an image intensity function

f (r, θ) is de�ned as [28]

Zfpq =
p+ 1

π

2πˆ

0

1ˆ

0

Qp (r) e−jqθf (r, θ) rdrdθ, |q| ≤ p, (3.1)

where Qp (r) is a set of radial polynomials given by

Qp (r) =

p∑
k=0

cp,kr
k, (3.2)

with

cp,k = (−1)
p+k (p+ k + 1)!

(p− k)!k! (k + 1)!
(3.3)

Since OFMMs are de�ned in terms of polar coordinates (r, θ) with |r| ≤ 1, the
computation of OFMMs requires a linear transformation of the image coordinates to a
suitable domain inside a unit circle. Here, we use the mapping transformation proposed
by Chong et al. [3], which is shown in Fig.(3.1). Based on this transformation, we
have the following discrete approximation of Eq.(3.1):

Zfpq =
p+ 1

π

N−1∑
i=0

N−1∑
j=0

Qp (rij) e
−jqθijf (i, j) , (3.4)

where the image coordinate transformation to the interior of the unit circle is given by

rij =

√
(c1i+ c2)

2
+ (c1j + c2)

2
, θij = tan−1

(
c1j + c2
c1i+ c2

)
(3.5)

with c1 =
√
2

N−1 , c2 = 1√
2
.

We now describe a general approach to derive a complete set of OFMM invariants.
We use the same method to achieve the translation invariance as described in [14].
That is, the origin of the coordinate system is located at the center of mass of the
object to achieve the translation invariance. This center of mass, (xc, yc), can be
computed from the �rst geometric moments of the object as follows

xc =
mf

10

mf
00

, yc =
mf

01

mf
00

, (3.6)

where mf
pqare the (p+ q)-th order geometric moments de�ned by

mf
pq =

∞̂

−∞

∞̂

−∞

xpyqf (x, y) dxdy. (3.7)
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Figure 3.1: Mapping image inside the unit circle.

Let Um (r) = (Q0 (r) , Q1 (r) , ..., Qm (r))
T
and Mm (r) =

(
r0, r1, ..., rm

)T
be two

vectors, where the superscript T indicates the transposition, we have

Um (r) = CmMm (r) , (3.8)

where Cm = (ci,j), with 0 ≤ j ≤ i ≤ m, is a (m+ 1) × (m+ 1) lower triangular
matrix whose element ci,j is given by Eq.(3.3).

Since all the diagonal elements of Cm, cl,l = (2l+1)!
l!(l+1)! , are not zero, the matrix Cm

is non-singular, thus

Mm (r) = (Cm)
−1
Um (r) = DmUm (r) , (3.9)

where Dm = (di,,j), with 0 ≤ j ≤ i ≤ m, is the inverse matrix of Cm. It is also a
(m+ 1)× (m+ 1) lower triangular matrix. The computation of the elements of Dm

is given in the following Proposition.

Proposition 1. For the lower triangular matrix Cm whose elements ci,j are de�ned
by Eq.(3.3), the elements of the inverse matrix Dm are given by

di,j =
(2j + 2) i! (i+ 1)!

(i+ 1)! (i+ j + 2)!
. (3.10)

The proof of Proposition 1 can be found in [39].
Let f and g be two images display the same pattern but with distinct orientation β

and scale λ, i.e., g (r, θ) = f (r/λ, θ − β). The OFMM of the image intensity function
g (r, θ) is de�ned as

Zgpq =
p+ 1

π

2πˆ

0

1ˆ

0

Qp (r) e−jqθg (r, θ) rdrdθ

= λ2e−jqβ
p+ 1

π

2πˆ

0

1ˆ

0

Qp (λr) e−jqθf (r, θ) rdrdθ,

(3.11)
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Letting

Um (λr) = (Q0 (λr) , Q1 (λr) , ..., Qm (λr))
T
,

Mm (λr) =
(

1, (λr)
1
, ..., (λr)

m
)T

,

it can be seen from Eq.(3.8) that

Um (λr) = CmMm (λr) . (3.12)

On the other hand,

Mm (λr) = diag
(
1, λ1, ..., λm

) (
1, r1, ..., rm

)T
= diag

(
1, λ1, ..., λm

)
Mm (r) .

(3.13)

Substituting Eq.(3.13) and Eq.(3.9) into Eq.(3.12), we obtain

Um (λr) = Cmdiag
(
1, λ1, ..., λm

)
DmUm (r) . (3.14)

By expanding Eq.(3.14), we have

Qp (λr) =

p∑
k=0

Qk (r)

p∑
l=k

λlcp,ldl,k. (3.15)

With the help of Eq.(3.15), Eq.(3.11) can be rewritten as

Zgpq = λ2e−jqβ
p+ 1

π

2πˆ

0

1ˆ

0

Qp (λr) e−jqθf (r, θ) rdrdθ

= λ2e−jqβ
p+ 1

π

2πˆ

0

1ˆ

0

(
p∑
k=0

Qk (r)

p∑
l=k

λlcp,ldl,k

)
e−jqθf (r, θ) rdrdθ

= e−jqβ
p∑
k=0

p+ 1

k + 1
× k + 1

π

p∑
l=k

λlcp,ldl,k

2πˆ

0

1ˆ

0

Qk (r) e−jqθf (r, θ) rdrdθ

= e−jqβ
p∑
k=0

p+ 1

k + 1

(
p∑
l=k

λl+2cp,ldl,k

)
Zfpq.

(3.16)
The above equation shows that the 2D scaled and rotated OFMMs, Zgpq, can be

expressed as a linear combination of the original OFMMs Zfpq with 0 ≤ k ≤ p. By
using this relationship, we can construct a complete set of both rotation and scale
invariants Ifpq, which is described in the following theorem.



Derivation of Moment Invariants 63

Theorem 1. For a given integer q and any positive integer p , let

Ifpq =

p∑
k=0

e−jqθf
p+ 1

k + 1

(
p∑
l=k

Γ
−(l+2)
f cp,ldl,k

)
Zfpq, (3.17)

with θf = arg
(
Zf11

)
and Γf =

√
Zf00. Then I

f
pq, is invariant to both image rotation

and scaling.

The reader can refer to [39]for the proof of Theorem 1.
Equation 3.17 can be expressed in matrix form as


If0q
If1q
.
.
.
Ifpq

 =e−jqθf diag (1, 2, ..., p+ 1)Cpdiag
(

Γ−2f ,Γ−3f , ...,Γ
−(p+2)
f

)
×

Dpdiag

(
1,

1

2
, ...,

1

p+ 1

)


Zf0q
Zf1q
.
.
.
Zfpq

 .

(3.18)

It is easy to verify that the set of invariants is complete by rewriting Eq.(3.18) as


Zf0q
Zf1q
.
.
.
Zfpq

 =ejqθf diag (1, 2, ..., p+ 1)Cpdiag
(

Γ2
f ,Γ

3
f , ...,Γ

(p+2)
f

)
×

Dpdiag

(
1,

1

2
, ...,

1

p+ 1

)


If0q
If1q
.
.
.
Ifpq

 .

(3.19)

Thus, we have

Zfpq =

p∑
k=0

ejqθf
p+ 1

k + 1

(
p∑
l=k

Γ
(l+2)
f cp,ldl,k

)
Ifpq. (3.20)
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The above equation shows that the set of invariants is complete. Note that the above
approach is general enough to be extended to any other radial orthogonal moments.
The only di�erence is that for a given matrix Cp whose elements correspond to the
coe�cients of a set of radial polynomials up to order p, we need to �nd its inverse
matrix, Dp.

3.2.2 Derivation of A�ne Invariants by Orthogonal Legendre
Moments

A�ne moment invariants (AMIs) are useful features of an image since they are in-
variant to general linear transformations of an image. The AMIs were introduced
independently by Reiss [25] and Flusser and Suk [9]. Since then, they have been
utilized as pattern features in a number of applications such as pattern recognition,
pattern matching, image registration and contour shape estimation.

The construction of a�ne moment invariants has been also extensively investigated.
The existing methods can be generally classi�ed into two categories: (1) direct method,
and (2) image normalization. Among the direct methods, Reiss [25] and Flusser and
Suk [9] derived the AMIs based on the theory of algebraic invariants and tensor tech-
niques. Suk and Flusser [32] used a graph method to construct the a�ne moment
invariants. Liu et al. [18] proposed an automatic method for generating the a�ne
invariants. Normalization is an alternative approach to derive the moment invariants.
An a�ne normalization approach was �rst introduced by Rothe et al. [26]. In their
work, two di�erent a�ne decompositions were used. The �rst known as XSR decom-
position consists of two skews, anisotropic scaling and rotation. The second is the
XYS and consists of two skews and anisotropic scaling. Zhang et al. [41] performed a
study of these a�ne decompositions and pointed out that both decompositions lead
to some ambiguities. More details on these decompositions will be given below. Pei
and Lin [22] presented an a�ne normalization for asymmetrical object and Suk and
Flusser [33] dealt with symmetrical object. Zhang and Wu [40] extended the method
to Legendre moments. Shen and Ip [27] used the generalized complex moments and
analyzed their behavior in recognition of symmetrical objects.

Almost all the existing methods to derive the a�ne invariants are based on geometric
moments and complex moments. Since the kernel functions of both geometric mo-
ments and complex moments are not orthogonal, this leads to information redundancy
when they are used to represent the image. This motivates us to use the orthogo-
nal moments in the construction of a�ne moment invariants. We present here a new
method to derive a set of a�ne invariants based on the orthogonal Legendre moments.

The 2D (p+ q)-th order Legendre moment of an image function f (x, y) is de�ned
as [35]

L(f)
pq =

1ˆ

−1

1ˆ

−1

Pp (x)Pq (x) f (x, y) dxdy, p, q = 0, 1, 2, ... , (3.21)

where Pp (x) is the p-th order orthonormal Legendre polynomials given by
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Pp (x) =

p∑
k=0

cp,kx
k, (3.22)

with

cp,k =


√

2p+1
2

(−1)
p−k
2 (p+k)!

2p( p−k
2 )!( p+k

2 )!k!
, p− k = even

0, p− k − odd
. (3.23)

It can be deduced from Eq.(3.22) that

xp =

p∑
k=0

dp,kPk (x) , (3.24)

where DM = (dp,k) , 0 ≤ k ≤ p ≤ M , is the inverse matrix of the lower triangular
matrix CM = (cp,k) .
The elements of DM are given by [30]

dp,k =


√

2
2k+1

2
3k−p

2

( p−k
2 )!

∏(p−k)/2
j=1 (2k+2j+1)

p!k!
(2k)! , p− k = even

0, p− k − odd
. (3.25)

The orthogonality property leads to the following inverse moment transform

f (x, y) =

∞∑
i=0

∞∑
j=0

Pi (x)Pj (x)L
(f)
ij . (3.26)

If only the moments of order up to (M,M) are computed, Eq.(3.26) is approximated
by

f (x, y) ≈
M∑
i=0

M∑
j=0

Pi (x)Pj (x)L
(f)
ij . (3.27)

In the next, we will establish a relationship between the Legendre moments of an
a�ne transformed image and those of the original image. The a�ne transformation
can be represented by [26](

x′

y′

)
= A

(
x
y

)
+

(
x0
y0

)
, (3.28)

where A =

(
a11 a12
a21 a22

)
is called the homogeneous a�ne transformation matrix.

The translation invariance can be achieved by locating the origin of the coordinate

system to the center of mass of the object, that is, L
(f)
01 = L

(f)
10 = 0. Thus, (x0, y0)

can be ignored and only the matrix A is taken into consideration in the following.
The 2D (p+ q)-th order Legendre moment of the a�ne transformed image f (x′, y′)

is de�ned by
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L(g)
p,q =

1ˆ

−1

1ˆ

−1

Pp (x′)Pq (y′) f (x′, y′) dx′dy′

= det (A)

1ˆ

−1

1ˆ

−1

Pp (a11x+ a12y)Pq (a21x+ a22y) f (x, y) dxdy,

(3.29)

where det (A) denotes the determinant of the matrix A.
In the following, we discuss the way to express the Legendre moments of the a�ne

transformed image de�ned by Eq.(3.29) in terms of Legendre moments of the original
image.
By replacing the variable x by a11x+ a12y in Eq.(3.22), we have

Pp (a11x+ a12y) =

p∑
m=0

cp,m (a11x+ a12y)
m

=

p∑
m=0

m∑
s=0

(
m
s

)
cp,ma

s
11a

m−s
12 xsym−s.

(3.30)

Similarly

Pq (a21x+ a22y) =

p∑
n=0

n∑
t=0

(
n
t

)
cq,na

t
21a

n−t
22 xtyn−t. (3.31)

Substituting Eq.(3.30) and Eq.(3.31) into Eq.(3.29) yields

L(g)
p,q = det (A)

1ˆ

−1

1ˆ

−1

p∑
m=0

m∑
s=0

q∑
n=0

n∑
t=0

(
m
s

)(
n
t

)
×

cp,mcq,na
s
11a

m−s
12 at21a

n−t
22 xs+tym+n−s−tf (x, y) dxdy.

(3.32)

Using Eq.(3.24), we have

xs+t =

s+t∑
i=0

ds+t,iPi (x) , ym+n−s−t =

m+n−s−t∑
j=0

dm+n−s−t,jPj (y) . (3.33)

Substitution of Eq.(3.33) into Eq.(3.32) leads to

L(g)
p,q = det (A)

p∑
m=0

q∑
n=0

m∑
s=0

n∑
t=0

s+t∑
i=0

m+n−s−t∑
j=0

(
m
s

)(
n
t

)
×

(a11)
s

(a12)
m−s

(a21)
t
(a22)

n−t
cp,mcq,nds+t,idm+n−s−t,jL

(f)
ij .

(3.34)
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Equation 3.34 shows that the Legendre moments of the transformed image can be
expressed as a linear combination of those of the original image.
The direct use of Eq.(3.34) leads to a complex non-linear systems of equations. To

avoid this, the homogeneous a�ne transformation matrix A is usually decomposed
into a product of simple matrices. The decompositions mentioned above, known as
XSR and XYS decompositions [26, 41], can be used.
The XSR decomposition decomposes the a�ne matrix A into an x-shearing, an

anisotropic scaling and a rotation matrix as follows[
a11 a12
a21 a22

]
=

[
cos θ sin θ
− sin θ cos θ

] [
λ 0
0 µ

] [
1 ρ
0 1

]
, (3.35)

where λ, µ and ρ are real numbers, and θ is the rotation angle between 0 and 2π.
The XYS decomposition relies on decomposing the a�ne matrix A into an x-

shearing, an y-shearing and an anisotropic scaling matrix, that is[
a11 a12
a21 a22

]
=

[
a 0
0 δ

] [
1 0
γ 1

] [
1 β
0 1

]
, (3.36)

where a, β , δ and γ are real numbers.
We adopt here the XYS decomposition. The same reasoning can be applied to the

XSR decomposition. Using Eq.(3.34), we can derive a set of a�ne Legendre moment
invariants (ALMIs) based on the following theorems.

Theorem 2. For given integers p and q, let

Ixshpq =

p∑
m=0

q∑
n=0

m∑
s=0

s∑
i=0

m+n−s∑
j=0

(
m
s

)
βm−scp,mcq,nds,idm+n−s,jLij , (3.37)

then Ixshpq are invariant to x-shearing.

The proof of Theorem 2 is available in [37].

Theorem 3. Let

Iyshpq =

p∑
m=0

q∑
n=0

n∑
t=0

m+t∑
i=0

n−t∑
j=0

(
n
t

)
γtcp,mcq,ndm+t,idn−t,jLij , (3.38)

then Iyshpq are invariant to y-shearing.

The proof of Theorem 3 is very similar to that of Theorem 2 as pointed out in [37].

Theorem 4. Let

Iαspq =

p∑
m=0

q∑
n=0

m∑
i=0

n∑
j=0

αm+1δn+1cp,mcq,ndm,idn,jLij , (3.39)
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then Iαspq are invariant to anisotropic scaling.

Refer also to [37] for the proof of Theorem 4. Notice that we can easily derive
the following theorem.

Theorem 5. The Legendre moments of an image can be expressed as a linear com-
bination of their invariants as follows:

Lpq =

p∑
m=0

q∑
n=0

m∑
s=0

s∑
i=0

m+n−s∑
j=0

(
m
s

)
(−β)

m−s
cp,mcq,nds,idm+n−s,jI

xsh
ij ,(3.40)

Lpq =

p∑
m=0

q∑
n=0

n∑
t=0

m+t∑
i=0

n−t∑
j=0

(
n
t

)
(−γ)

t
cp,mcq,ndm+t,idn−t,jI

ysh
ij , (3.41)

Lpq =

p∑
m=0

q∑
n=0

m∑
i=0

n∑
j=0

α−(m+1)δ−(n+1)cp,mcq,ndm,idn,jI
αs
ij . (3.42)

The above equations show that the set of invariants is complete.
From this standpoint, by combining Ixshpq , Iyshpq , Iαspq , that are respectively invariant

to x-shearing, y-shearing and anisotropic scaling, we can obtain a set of ALMIs. For
an image f (x, y), we use the following process:

Step 1: x-shearing Legendre moment invariants are calculated by Eq.(3.37), where
the Legendre moments Lij are computed with Eq.(3.21).
Step 2: The combined invariants with respect to x-shearing and y-shearing are calcu-
lated by Eq.(3.38) where the Legendre moments on the right-hand side of Eq.(3.38)
are replaced by computed in Step 1.
Step 3: The a�ne Legendre moment invariants are calculated by Eq.(3.39) where the
Legendre moments on the right-hand side of Eq.(3.39) are replaced by computed in
Step 2.

Because the parameters βf , γf , αf and δf in Eqs.(3.37)-(3.39) are image dependent,
they must be estimated. Considering an a�ne transform and its XYS decomposition,
by setting Ixsh30 = 0 in Eq.(3.37), we have

L03β
3 +

√
105

3
L12β

2 +

√
105

3
L21β + L30 = 0. (3.43)

The parameter β can then be determined by solving Eq.(3.43).
From Eq.(3.38), we have

Iysh11 = γ

(
L00 +

2√
5
L20

)
+ L11. (3.44)

Letting Iysh11 = 0, we obtain

γ = − L11

L00 + 2√
5
L20

. (3.45)
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Setting Ias20 = Ias02 = 1, we have

α =

√
b2 + 4a− b

2a
, δ =

√
b′2 + 4a′ − b′

2a′
, (3.46)

where

a =
√

V 3

U , b = −
√
5
2 L00

√
V
U , a

′ =
√

U3

V , b′ = −
√
5
2 L00

√
U
V ,

U = L02 +
√
5
2 L00, V = L20 +

√
5
2 L00.

(3.47)

The parameters βg, γg, αg and δg associated with the transformed image g (x, y)
can also be estimated according to Eqs.(3.43), (3.45) and (3.46). It can be veri�ed
that the parameters provided by the above method satisfy the following relationships:
βf = βg + β0, γf = γg + γ0, αf = α0αg and δf = δ0δg, where α0, β0, γ0 and δ0 are
the coe�cients of the a�ne transform applied to f . Based on these relationships, the
conditions given in Theorems 2 to 4 are satis�ed. It is worth noting that other choice
of parameters can also be made to keep the invariance of Eqs.(3.37)-(3.39) to image
transformation.
To illustrate this section, a result extracted from a watermarking application has

been selected [37]. Image watermarking aimed at responding to copyright protection
concerns. To be e�cient, such watermarking must be robust against a variety of
attacks among which geometric distortions. In [37], a�ne invariants derived from
Legendre moments were used. Watermark embedding and detection were directly
performed on this set of invariants. Moreover, these moments were exploited for esti-
mating the geometric distortion parameters in order to permit watermark extraction.
Figure 3.2.2a shows the watermark used. It was embedded in four standard images
further attacked by a�ne transformations (Fig.(3.2.2b) to (3.2.2e)). The size of the
watermark image in that case is equal to the initial sizes of embedding images. The ex-
tracted watermarks in these respective images are depicted in Fig.(3.2.2f) to (3.2.2i)
and it can easily be seen that they are correctly recovered even if a certain loss in
quality is observed.

3.3 Derivation of Moment Invariants to Blur, and

Combined Invariants to Geometric

Transformation and to Blur

Because the real sensing systems are usually imperfect and the environmental condi-
tions are changing over time, the acquired images often provide a degraded version
of the true scene. An important class of degradations we are faced with in practice
is image blurring, which can be caused by di�raction, lens aberration, wrong focus,
and atmospheric turbulence. Blurring can be usually described by a convolution of an
unknown original image with a space invariant point spread function (PSF). In pat-
tern recognition, for instance, two options have been widely explored either through a
two-step approach by restoring the image and then applying recognition methods, or
by designing a direct one-step solution, free of blurring e�ects. In the former case, the
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Figure 3.2: (a) Logo used as watermark. (b)-(e) Watermarked images under
a�ne transformation. (f)-(i) Extracted watermark from (b)-(e). With
permission.

point spread function, most often unknown in real applications, should be estimated.
In the latter case, �nding a set of invariants that are not a�ected by blurring is the
key problem.

The pioneering work in this �eld was performed by Flusser et al. [10] who derived in-
variants to convolution with an arbitrary centrosymmetric PSF. These invariants have
been successfully used in template matching of satellite images, in pattern recognition,
in blurred digit and character recognition, in normalizing blurred images into canon-
ical forms, and in focus/defocus quantitative measurement. More recently, Flusser
and Zitova introduced the combined blur-rotation invariants [12] and reported their
successful application to satellite image registration and camera motion estimation.
Suk and Flusser further proposed a set of combined invariants which are invariant to
a�ne transform and to blur [31]. The extension of blur invariants to N-dimensions
has also been investigated [8, 1]. All the existing methods to derive the blur invariants
are based on geometric moments or complex moments. However, both geometric mo-
ments and complex moments contain redundant information and are sensitive to noise
especially when high-order moments are concerned. This is due to the fact that the
kernel polynomials are not orthogonal. Since the orthogonal moments are better than
other types of moments in terms of information redundancy, and are more robust to
noise, it could be expected that the use of orthogonal moments in the construction of
blur invariant provides better recognition results.

The second part of this chapter is aimed at showing how to construct a set of blur
invariants by means of orthogonal moments.
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3.3.1 Derivation of Invariants to Blur by Legendre Moments

We �rst review the theory of blur invariants of geometric moments reported in [30, 37],
and then we present some basic de�nitions of Legendre moments.

A. Blur Invariants of Geometric Moments
The 2D geometric central moment of order (p+ q), with image intensity function

f (x, y), is de�ned as

µ(f)
pq =

1ˆ

−1

1ˆ

−1

(
x− x(f)c

)p (
y − y(f)c

)q
f (x, y) dxdy, (3.48)

where, without loss of generality, we assume that the image function f (x, y) is de�ned

on the square [−1, 1]× [−1, 1].
(
x
(f)
c , y

(f)
c

)
denotes the centroid of f (x, y), which is

de�ned by Eq.(3.6).

Let g (x, y) be a blurred version of the original image f (x, y). The blurring is
classically described by the convolution

g (x, y) = (f ∗ h) (x, y) , (3.49)

where h (x, y) is the PSF of the imaging system, and ∗ denotes the linear convolution.
Assuming that the PSF, h (x, y), is a centrally symmetric image function and the

imaging system is energy-preserving, that is

h (x, y) = h (−x,−y) , (3.50)

1ˆ

−1

1ˆ

−1

h (x, y) dxdy = 1. (3.51)

As noted by Flusser et al. [10], the assumption of centrally symmetry is not a signif-
icant limitation of practical utilization of the method. Most real sensors and imaging
systems have PSFs with certain degrees of symmetry. In many cases they have even
higher symmetry than central, such as axial or radial symmetry. Thus, the central
symmetry assumption is general enough to describe almost all practical situations.

Lemma 1 [10]. The centroid of the blurred image g (x, y) is related to the cen-
troid of the original image f (x, y) and that of the PSF h (x, y) as

x
(g)
c = x

(f)
c + x

(h)
c ,

y
(g)
c = y

(f)
c + y

(h)
c ,

(3.52)

In particular, if h (x, y) is centrally symmetric, then x
(h)
c = y

(h)
c = 0. In such a

case, we have x
(g)
c = x

(f)
c , y

(g)
c = y

(f)
c .
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B. Blur Invariants of Legendre Moments
The 2D (p+ q)-th order Legendre central moment of image intensity function

f (x, y), is de�ned as

L
(f)

pq =

1ˆ

−1

1ˆ

−1

Pp

(
x− x(f)c

)
Pq

(
y − y(f)c

)
f (x, y) dxdy, p, q = 0, 1, 2, ..., (3.53)

where Pp (x) is the p-th order orthonormal Legendre polynomials given by Eq.(3.22).
In the following, we �rst establish a relationship between the Legendre moments of

the blurred image and those of the original image and the PSF. We then derive a set
of blur moment invariants.
The 2D normalized Legendre moments of a blurred image, g(x, y), are de�ned by

L(g)
p,q =

1ˆ

−1

1ˆ

−1

Pp (x)Pq (y) g (x, y) dxdy

=

1ˆ

−1

1ˆ

−1

Pp (x)Pq (y) (f ∗ h) (x, y) dxdy

=

1ˆ

−1

1ˆ

−1

Pp (x)Pq (y)

 ∞̂

−∞

∞̂

−∞

h (a, b) f (x− a, y − b) dadb

 dxdy

=

1ˆ

−1

1ˆ

−1

h (a, b)

 1ˆ

−1

1ˆ

−1

Pp (x+ a)Pq (y + b) f (x, y) dxdy

 dadb.

(3.54)

The following theorem reveals the relationship between the Legendre moments of
the blurred image and those of the original image and the PSF.

Theorem 6. Let f (x, y) be the original image function and the PSF h (x, y) be
an arbitrary image function, and g (x, y) be a blurred version of f (x, y), then the
relations

L(g)
p,q =

p∑
i=0

q∑
j=0

L
(f)
i,j

p−i∑
s=0

q−j∑
t=0

L
(h)
s,t

p−s∑
k=i

p∑
m=k+s

q−t∑
l=j

q∑
n=l+t

(
m
k

)(
n
l

)
×

cp,mcq,ndk,idm−k,sdl,jdn−l,t

(3.55)

and

L
(g)

p,q =

p∑
i=0

q∑
j=0

L
(f)

i,j

p−i∑
s=0

q−j∑
t=0

L
(h)

s,t

p−s∑
k=i

p∑
m=k+s

q−t∑
l=j

q∑
n=l+t

(
m
k

)(
n
l

)
×

cp,mcq,ndk,idm−k,sdl,jdn−l,t.

(3.56)
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hold for every p and q.
We further have the following result.

Theorem 7. If h (x, y) satis�es the conditions of central symmetry, then

(a) L
(h)
p,q = L

(h)

p,q for every p and q;

(b) L
(h)
p,q = 0 if (p+ q) is odd.

The proof of the above two theorems can be found in [38].

With the help of Theorems 6 and 7, we are now ready to construct a set of blur
invariants of Legendre moments through the following theorem.

Theorem 8. Let f (x, y) be an image function. Let us de�ne the following func-
tion I(f) : N ×N −→ R.
If (p+ q) is even then

I (p, q)
(f)

= 0.

if (p+ q) is odd then

I (p, q)
(f)

=L(f)
p,q −

1

2L
(f)
0,0

p∑
i=0

q∑
j=0

0<i+j<p+q

I (i, j)
(f)

p−i∑
s=0

q−j∑
t=0

L
(f)
s,t

p−s∑
k=i

p∑
m=k+s

q−t∑
l=j

q∑
n=l+t

(
m
k

)
×
(
n
l

)
cp,mcq,ndk,idm−k,sdl,jdn−l,t.

(3.57)

Therefore, I (p, q) is invariant to centrally symmetric blur for any p and q. The
number (p+ q) is called the order of the invariant. The proof of Theorem 8 is also
given in [38].

Using the Legendre central moments instead of Legendre moments, we can obtain

a set of invariants to translation and to blur which are formally similar to I (p, q)
(f)

.

Theorem 9. Let f (x, y) be an image function. Let us de�ne the following func-

tion I
(f)

: N ×N −→ R.
If (p+ q) is even then

I (p, q)
(f)

= 0.

if (p+ q) is odd then
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Figure 3.3: Eight objects selected from the Coil-100 image database of Columbia Uni-
versity. With permission.

Figure 3.4: Some examples of the blurred images corrupted by various types of noise.
With permission.

I (p, q)
(f)

=L(f)
p,q −

1

2L
(f)

0,0

p∑
i=0

q∑
j=0

0<i+j<p+q

I (i, j)
(f)

p−i∑
s=0

q−j∑
t=0

L
(f)

s,t

p−s∑
k=i

p∑
m=k+s

q−t∑
l=j

q∑
n=l+t

(
m
k

)
×
(
n
l

)
cp,mcq,ndk,idm−k,sdl,jdn−l,t.

(3.58)

Thus I (p, q)
(f)

, is invariant to centrally symmetric blur and to translation for any p
and q.
It should be noted that I (p, q) in Eq.(3.58) deals with translation of both the image

and the PSF. Based on Eq.(3.58), we can construct a set of blur and translation
invariants of Legendre moments and express them in explicit form. The invariants of
the third, �fth and seventh orders are listed in Appendix.
Partial results of the method reported in [38] for blurred image recognition by Leg-

endre moment invariants will serve as an example of what can be expected in terms
of performance. The original images were selected from the Coil-100 image database
of Columbia University (size 160 × 160), which are shown in Fig.(3.3). They were
blurred by means of averaging blur, out-of-focus blur, Gaussian blur and motion blur
with di�erent mask sizes and corrupted by additive Gaussian noise or salt-and-pepper
noise (see Fig.(3.4) for some samples). Table 3.1 provides a comparison between ge-
ometric moments invariants (GMI), complex moment invariants (CMI) and Legendre
moment invariants (LMI). Only the highest levels of noise are considered here.
This table shows that all moments behave well in noise-free situations. Relatively

poor classi�cation rates are observed when the noise level is high. LMIs perfom better
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Table 3.1: The recognition rates of the GMI, CMI and LMI in object recognition
(Fig.4). With permission.

GMI CMI LMI

Noise-free 100% 100% 100%
Additive white noise with STD=8 78.33% 80% 96.25%
Additive white noise with STD=25 60.42% 50.62% 74.79%
Additive salt-and-pepper noise with noise density = 0.03 68.13% 56.46% 79.37%
Additive multiplicative noise with noise density = 0.5 90% 81.88% 95.63%
Computation time 9.42s 44.14s 9.80s

than GMIs and CMIs. The classi�cation rates are higher than 95% but show insu�-
cient performance in some cases. The computational times are also indicated. The
implementations were done in MATLAB 6.5 on a PC P4 2.4 GHZ, 512 M RAM. More
detailed experimentations and results can be found in [38].

3.3.2 Combined Invariants to Similarity and to Blur by Zernike
Moments

We have proposed in the previous section an approach based on the orthogonal Leg-
endre moments to derive a set of blur invariants. It has been shown in [38] that
they are more robust to noise and have better discriminative power than the existing
methods. However, one weak point of Legendre moment descriptors is that they are
only invariant to translation, but not invariant under image rotation and scaling. Zhu
et al. [42] and Ji and Zhu [15] proposed the use of the Zernike moments to construct
a set of combined blur-rotation invariants. Unfortunately, there are two limitations
to their methods: (1) only a Gaussian blur has been taken into account, which is a
special case of PSF having circularly symmetry; (2) only a subset of Zernike moments
of order p with repetition p, Zp,p, has been used in the derivation of invariants. Since
Zp,p corresponds to the radial moment Dp,p or the complex moment C0,p if neglecting
the normalization factor, the set of invariants constructed by Zhu et al. is a subset of
that proposed by Flusser [13].

Here, we propose a new method to derive a set of combined geometric-blur invariants
based on orthogonal Zernike moments. We further assume that the applied PSF is
circularly symmetric. The reasons for such a choice of PSF are as follows [13]: (1) the
majority of the PSFs occurring in real situations exhibit a circular symmetry; (2) since
the PSFs having circular symmetry are a subset of centrosymmetric functions, it could
be expected that we can derive some new invariants. In fact, the previously reported
convolution invariants with centrosymmetric PSF include only the odd order moments.
Flusser and Zitova [13] have shown that there exist even order moment invariants with
circularly symmetric PSF. The radial moment of order p with repetition q of image
intensity function f (r, θ) is de�ned as
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D(f)
p,q =

2πˆ

0

1ˆ

0

rpe−ĵqθf (r, θ) rdrdθ, (3.59)

with ĵ =
√
−1, 0 ≤ r ≤ 1, p ≥ 0, q = 0,±1,±2, ...The Zernike moment of order p

with repetition q of f (r, θ) is de�ned as [35]

Z(f)
p,q =

p+ 1

π

2πˆ

0

1ˆ

0

Rp,q (r) e−ĵqθf (r, θ) rdrdθ, p ≥ 0, |q| ≤ p, p− |q| being even,

(3.60)
where Rp,q (r)is the real-valued radial polynomial given by

Rp,q (r) =

(p−|q|)/2∑
k=0

(−1)
k

(p− k)!

k!
(
p+|q|

2 − k
)

!
(
p−|q|

2 − k
)

!
rp−2k. (3.61)

The above equation shows that the radial polynomial Rp,q (r) is symmetric with q,
that is, Rp,−q (r) = Rp,q (r), for q ≥ 0. Thus, we can consider the case where q ≥ 0.
Letting p = q + 2l in Eq.(3.61) with l ≥ 0, and substituting it into Eq.(3.60) yields

Z
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q + 2l + 1

π

2πˆ
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1ˆ

0
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e−ĵqθf (r, θ) rdrdθ

=
q + 2l + 1

π

2πˆ

0

1ˆ
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e−ĵqθf (r, θ) rdrdθ

=

l∑
k=0

(−1)
l−k q + 2l + 1

π

(q + l + k)!

k! (q + k)! (l − k)!

2πˆ
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=
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k=0

cql,kD
(f)
q+2k,q,

(3.62)

where

cql,k = (−1)
l−k q + 2l + 1

π

(q + l + k)!

k! (q + k)! (l − k)!
(3.63)

Let f ′ be a rotated version of f , i. e. f ′ (r, θ) = f (r, θ − β), where β is the angle of

rotation, and let Z
(f ′)
q+2l,qbe the Zernike moments of f ′ . It can be seen from Eq.(3.61)

that
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Z
(f ′)
q+2l,q = e−ĵqβZ

(f)
q+2l,q. (3.64)

Let g (x, y) be a blurred version of the original image , and h (x, y) be the PSF
of the imaging system. We assume that the PSF, h (x, y), is a circularly symmetric
image function, and that the imaging system is energy-preserving, which leads to

h (x, y) = h (r, θ) = h (r) , (3.65)

ˆ ˆ
h (x, y) dxdy = 1. (3.66)

Under the assumption of Eq.(3.65), the Zernike moments ofh (r, θ) equal those of
any rotated image h′. Combining this fact with Eq.(3.64), we get

Z
(h)
q+2l,q = Z

(h′)
q+2l,q = e−ĵqβZ

(h)
q+2l,q. (3.67)

Equation 3.67 is veri�ed if and only if either Z
(h)
q+2l,q = 0 or q = 0. Thus, an

important property of circularly symmetric functions can be stated as follows.

Proposition 2. If q 6= 0 and h (r, θ) is a circularly symmetric image function, then

Z
(h)
q+2l,q = 0 for any non-negative integer l.

The proof of Proposition 2 can be found in [2].
We can now establish the relationship between the Zernike moments of the blurred

image and those of the original image and the PSF. To that end, we �rst consider the
radial moments. Applying Eq.(3.59) to blurred image g (x, y), we have
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(3.68)

with

T (a, b) =
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))k
f (x, y) dxdy.
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Finally, Eq.(3.68) take the form

D
(g)
q+2k,q =
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m=0

k∑
n=0

(
q + k
m

)(
k
n

)
D

(f)
m+n,m−nD

(h)
q+2k−m−n,q+n−m. (3.69)

Applying Eq.(3.62) to blurred image g (x, y) = g (r, θ) and using Eq.(3.69), we
obtain

Z
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(3.70)
From Eq.(3.62), the radial moments can also be expressed as a series of Zernike

moments

D
(f)
q+2l.q =

l∑
k=0

dql,kZ
(f)
q+2k,q, (3.71)

where Dq
l =

(
dqi,j
)
, 0 ≤ j ≤ i ≤ l, is the inverse matrix of Cql =

(
cqi,j
)
. Both Cql

and Dq
l are lower triangular matrices of size (l + 1)× (l + 1), the elements of Cql are

given by Eq.(3.63). The elements of Dq
l are given by [29]

dqi,j =
i! (q + i)!π

(i− j)! (q + i+ j + 1)!
, 0 ≤ j ≤ i ≤ l. (3.72)

From Eq.(3.71), we have

D
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n∑
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dm−nn,i Z
(f)
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D
(h)
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k−n∑
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dq+n−mk−n,j Z
(h)
q+n−m+2j,q+n−m, (3.74)

By introducing Eq.(3.73) and Eq.(3.74) into Eq.(3.70), we obtain

Z
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l∑
k=0
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(3.75)

Based on Eq.(3.75), we have the following theorem.

Theorem 10. Let f (r, θ) be the original image function and the PSF h (r, θ) be
circularly symmetric, g (r, θ) be a blurred version of f (r, θ), then the following rela-
tion
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Z
(g)
q+2l,q =

l∑
i=0

Z
(f)
q+2i,q

l−i∑
j=0

Z
(h)
2j,0A (q, l, i, j) , (3.76)

stands for any q ≥ 0 and l ≥ 0, where the coe�cients A (q, l, i, j) are given by

A (q, l, i, j) =

l∑
k=i+j

k−j∑
n=i

(
q + k
q + n

)(
k
n

)
cql,kd

q
n,id

0
k−n,j . (3.77)

Its proof can also be found in [2].
Based on Theorem 10, it becomes possible to construct a set of blur invariants of

Zernike moments through the following theorem.

Theorem 11. Let f (r, θ) be an image function. Let us de�ne the following function
I(f) : N ×N −→ R.

I (q + 2l, q)
(f)

= Z
(f)
q+2l,q −

1

Z
(f)
0,0 π

l−1∑
i=0

I (q + 2i, q)
(f)

l−i∑
j=0

Z
(f)
2j,,0A (q, l, i, j) . (3.78)

Then I (q + 2l, q)
(f)

is invariant to circularly symmetric blur for any q ≥ 0 and l ≥ 0.
The number p = q + 2l is called the order of the invariant.

The proof of Theorem 11 has been reported in [2].
Some remarks deserve to be made.

Remark 1. By using the symmetric property of Rp,q (r) with q, it can be easily

proven that I (|q|+ 2l, q)
(f)

for q < 0 is also invariant to convolution.

Remark 2. It can be deduced from Eq.(3.78) that I (2l, 0)
(f)

= (−1)
l
(2l + 1)Z

(f)
0,0 .

Thus, only I (0, 0)
(f)

= Z
(f)
0,0 will be used as invariant for the case q = 0.

Remark 3. If we use the Zernike central moments Z
(f)

q+2l,q instead of Zernike moments

in Eq.(3.78), then we can obtain a set of invariants I (q + 2l, q)
(f)

that is invariant to
both translation and to blur.

Based on Theorem 11, we can construct a set of blur invariants of Zernike moments
with arbitrary order and express them in explicit form. The invariants up to sixth order
are listed in the Appendix.

Lemma 2. Let f ′ be a rotated version of f , i.e., f ′′ (r, θ) = f (r, θ − β), where
β denotes the rotation angle, then the following relation holds for any q ≥ 0 and l ≥ 0

I (q + 2l, q)(
f ′) = e−ĵqβI (q + 2l, q)

(f)
. (3.79)
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Lemma 3. Let f (r, θ) be an image function. It holds for any q ≥ 0 and l ≥ 0 that

I (q + 2l,−q)(f) = I∗ (q + 2l, q)
(f)

, (3.80)

where the superscript ∗ denotes the complex conjugate.

The proof of the two lemmas can be found in [2].
In the following, we construct a set of combined geometric-blur invariants. As

already stated, the translation invariance can be achieved by using the central Zernike

moments. Equation 3.79 shows that the magnitude of I (q + 2l, q)
(f)

is invariant
to rotation. However, the magnitudes do not yield a complete set of the invariants.
Herein, we provide a way to build up such a set. Let f ′′ and f be two images having the
same content but distinct orientation β and scale λ, that is, f ′′ (r, θ) = f (r/λ, θ − β),
the Zernike moment of the transformed image is given by

Z
(f ′′)
q+2l,q =

q + 2l + 1

π

2πˆ

0

1ˆ

0

Rq+2l,q (r) e−ĵqθf (r/λ, θ − β) rdrdθ

= e−ĵqβ
q + 2l + 1

π
λ2

2πˆ

0

1ˆ

0

Rq+2l,q (λr) e−ĵqθf (r, θ) rdrdθ.

(3.81)

Using Eq.(3.62) and Eq.(3.71) we have

Z
(f ′′)
q+2l,q = e−ĵqβ

l∑
k=0

λq+2k+2cql,kD
(f)
q+2k,q

= e−ĵqβ
l∑

k=0

k∑
m=0

λq+2k+2cql,kd
q
k,mZ

(f)
q+2m,q

= e−ĵqβ
l∑

m=0

l∑
k=m

λq+2k+2cql,kd
q
k,mZ

(f)
q+2m,q.

(3.82)

Therefore, we have the following theorem:

Theorem 12. Let

L
(f ′)
q+2l,q = e−ĵqθf

l∑
m=0

l∑
k=m

Γ
−(q+2k+2)
f cql,kd

q
k,mZ

(f)
q+2m,q (3.83)

with θf = arg
(
Z

(f)
1,1

)
and Γf =

√
Z

(f)
0,0 . Then L

(f ′)
q+2l,q is invariant to both image

rotation and scaling for any non-negative integers q and l.
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Figure 3.5: Images of the outdoor scene. (a) The original image, (b) The trans-
formed and blurred image, (c) The matched templates using CMIs, (d)
The matched templates using the proposed ZMIs With permission.

Remark 4. Many other choices of θf and Γf are possible. In fact, they can be chosen
in such a way that we Γf ′′ = λΓf , θf ′′ = θf − β where f ′′ (r, θ) = f (r/λ, θ − β) is
the transformed image of f . However, it is preferable to use the lower order moments
because they are less sensitive to noise than the higher order ones. If the central

moments are used, θf can be chosen as θf = arg
(
Zf3,1

)
.

Theorem 13. For any q ≥ 0 and l ≥ 0, let

SI (q + 2l, q)
(f)

= e−ĵqθf
l∑

m=0

l∑
k=m

Γ
−(q+2k+2)
f cql,kd

q
k,mI (q + 2m, q)

(f)
, (3.84)

where I (q + 2m, q)
(f)

is de�ned in Eq.(3.78). Then SI (q + 2l, q)
(f)

is both invariant
to convolution and to image scaling and rotation.

The proofs of Theorems 12 and 13 are given in [2]. The combined invariants up
to sixth order are listed in Appendix.
For illustration purpose of this section, we take one of the examples depicted in [2].

It relies on a set of combined geometric-blur invariants derived from Zernike moments
and aims at localizing templates in a real outdoor scene displayed in Fig.(3.5).
The initial images were acquired by a standard digital camera submitted to a rota-

tion and an out-of-focus blur. Nine templates were extracted in the reference image
(numbered from 1 to 9 in the left image). They were then searched in the transformed
and blurred image by using a template matching procedure. The results show that the
ZMIs lead to �nd all templates when CMIs fail to only detect part of them.

3.4 Conclusion

Although orthogonal moments and their respective invariants have attracted much in-
terest all over the world these last years with both impressive theoretical contributions
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and multiple applications, it is expected that this trend will continue and will open
new paths in computer vision at large. The complexity of situations to handle (dense
scenes, non-geometric/unstructured objects, large deformations, occlusions, projective
transformations, etc), the strong competition with other methodological approaches
(di�erential invariants, multi-scale methods, shape-based algorithms, shape from tex-
ture, etc) will continuously challenge the moment-based techniques. If most of the
papers recently published are comparing moment-based methods (Zernike to Legendre
and the like), more comparisons with di�erent frames are required in order to assess
when and where they bring a real superiority. Criteria such that robustness (to noise,
deformations, blur, and so on), accuracy in localization (i.e. critical in matching and
registration), distinctiveness (for discrimination purpose) and others can be considered
for that.
Let us recall that moment invariants do solve only partially the computer vision

problems. They have to be integrated in the full image processing scheme (from im-
age acquisition to image interpretation). Speci�c constraints (large data sets to deal
with, real-time or almost real-time processing) must also be taken into consideration
to address practical problems: accelerated algorithms deserve interest to reduce the
computation load. Following [16], special attention should be paid to a proper imple-
mentation of moment-based algorithms to preserve their orthogonality properties.
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Appendix A

The expressions given below provide to the interested readers all the elements to
replicate our method and to apply it to other examples.

A1. List of Legendre moment invariants up to the seventh order

Third Order

I (3, 0) = L30

I (2, 1) = L21

I (1, 2) = L12

I (0, 3) = L03

Fifth Order

I (5, 0) = L50 −
3
√

77

2
L30 −

3
√

385L20L30

5L00

I (4, 1) = L41 −
7
√

5

2
L21 −

1

L00

(
7L21L20 +

√
21L11L30

)
I (3, 2) = L32 −

5

6

√
21L12 −

√
5

2
L30 −

1

L00

×(√
105

3
L20L12 +

5
√

21

3
L11L21 + L02L30

)

I (2, 3) = L23 −
5

6

√
21L21 −

√
5

2
L03 −

1

L00

×(√
105

3
L02L21 +

5
√

21

3
L11L12 + L20L03

)

I (1, 4) = L14 −
7
√

5

2
L12 −

1

L00

(
7L12L02 +

√
21L11L03

)
I (0, 5) = L05 −

3
√

77

2
L03 −

3
√

385L02L03

5L00

Seventh Order

I (7, 0) =L70 −
1727

√
105

120
L30 −

13
√

165

6
I (5, 0)− 1

L00

(
1595
√

21

42
L20L30

+
143
√

105

35
L40L30 +

13
√

33

3
L20I (5, 0)

)
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I (6, 1) =L61 −
351
√

65

40
L21 −

11
√

13

2
I (4, 1)− 1

L00

(
45
√

13

2
L20L21

+
11
√

65

5
L40L21 +

109
√

273

30
L11L30 +

33
√

13

5
L31L30

+
11
√

65

5
L20I (4, 1) +

√
429

3
L11I (5, 0)

)

I (5, 2) =L52 −
119
√

33

24
L12 −

3
√

385

4
L30 −

3
√

77

2
I (3, 2)−

√
5

2
I (5, 0)

− 1

L00

(
73
√

165

30
L20L12 +

√
33L40L12 +

73
√

33

6
L11L21

+ 3
√

77L31L21 +
3
√

77

2
L02L30 +

3
√

77

2
L20L30

+
3
√

385

5
L22L30 +

3
√

385

5
L20I (3, 2)

√
165L11I (4, 1) + L02I (5, 0)

)

I (4, 3) =L43 −
61

8
L03 −

35
√

105

12
L21 −

7
√

5

2
I (2, 3)− 5

√
21

6
I (4, 1)

− 1

L00

(
7
√

5

2
L20L03 + L40L03 +

9
√

105

2
L11L12 + 7

√
5L31L12

+
35
√

21

6
L02L21 +

35
√

21

6
L20L21 +

7
√

105

3
L22L21 + 7L20I (2, 3)

+
35

2
L11L30 +

√
21L13L30 + 7

√
5L11I (3, 2) +

√
105

3
L02I (4, 1)

)

I (3, 4) =L34 −
61

8
L30 −

35
√

105

12
L12 −

7
√

5

2
I (3, 2)− 5

√
21

6
I (1, 4)

− 1

L00

(
7
√

5

2
L02L30 + L04L30 +

9
√

105

2
L11L21 + 7

√
5L13L21

+
35
√

21

6
L20L12 +

35
√

21

6
L02L12 +

7
√

105

3
L22L12 + 7L02I (2, 3)

+
35

2
L11L03 +

√
21L31L03 + 7

√
5L11I (2, 3) +

√
105

3
L20I (1, 4)

)
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I (2, 5) =L25 −
119
√

33

24
L21 −

3
√

385

4
L03 −

3
√

77

2
I (2, 3)−

√
5

2
I (0, 5)

− 1

L00

(
73
√

165

30
L02L21 +

√
33L04L21 +

73
√

33

6
L11L12 + 3

√
77L13L12

+
3
√

77

2
L20L03 +

3
√

77

2
L02L03 +

3
√

385

5
L22L03 +

3
√

385

5
L02I (2, 3)

+
√

165L11I (1, 4) + L20I (0, 5)

)

I (1, 6) =L16 −
351
√

65

40
L12 −

11
√

13

2
I (1, 4)− 1

L00

(
45
√

13

2
L02L12

+
11
√

65

5
L04L12 +

109
√

273

30
L11L03 +

33
√

13

5
L13L03

+
11
√

65

5
L02I (1, 4) +

√
429

3
L11I (0, 5)

)

I (0, 7) =L07 −
1727

√
105

120
L03 −

13
√

165

6
I (0, 5)− 1

L00

(
1595
√

21

42
L02L03

+
143
√

105

35
L04L03 +

13
√

33

3
L02I (0, 5)

)

A2. List of Zernike moment blur invariants up to the sixth order

Zero Order
I (0, 0) = Z0,0

First Order
I (1, 1) = Z1,1

Second Order
I (2, 2) = Z2,2

Third Order

I (3, 1) = Z3,1 − 6I (1, 1)− 2I (1, 1)Z2,0/Z0,0

I (3, 3) = Z3,3
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Fourth Order

I (4, 2) = Z4,2 − 10I (2, 2)− 10I (2, 2)Z2,0/Z0,0

I (4, 4) = Z4,4

Fifth Order

I (5, 1) = Z5,1 − 54I (1, 1)− 15I (3, 1)−
[
23I (1, 1)Z2,0

+3I (1, 1)Z4,0 + 5I (3, 1)Z2,0

]
/Z0,0

I (5, 3) = Z5,3 − 15I (3, 3)− 5I (3, 3)Z2,0/Z0,0

I (5, 5) = Z5,5

Sixth Order

I (6, 2) = Z6,2 − 105I (2, 2)− 21I (4, 2)−
[
140I (2, 2)Z2,0/3

+7I (2, 2)Z4,0 + 7I (4, 2)Z2,0

]
/Z0,0

I (6, 4) = Z6,4 − 21I (4, 4)− 7I (4, 4)Z2,0/Z0,0

I (6, 6) = Z6,6

A3. List of combined Zernike moment invariants up to the sixth order

Second Order

SI (2, 0) = −3Γ−2f I (0, 0) + 3Γ−4f I (0, 0) + Γ−4f I (2, 0)

SI (2, 2) = e−2ĵθf Γ−4f I (2, 2)

Third Order

SI (3, 1) = e−ĵθf
[
−4Γ−3f I (1, 1) + 4Γ−5f I (1, 1) + Γ−5f I (3, 1)

]
= e−ĵθf Γ−5f I (3, 1)

SI (3, 3) = e−2ĵθf Γ−5f I (3, 3)
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Fourth Order

SI (4, 0) = 5Γ−2f I (0, 0)− 15Γ−4f I (0, 0) + 10Γ−6f I (0, 0)− 5Γ−4f I (2, 0)

+5Γ−6f I (2, 0) + Γ−6f I (4, 0)

SI (4, 2) = e−2ĵθf
[
−5Γ−4f I (2, 2) + 5Γ−6f I (2, 2) + Γ−6f I (4, 2)

]
SI (4, 4) = e−4ĵθf Γ−6f I (4, 4)

Fifth Order

SI (5, 1) = e−ĵθf
[
9Γ−3f I (1, 1)− 24Γ−5f I (1, 1) + 15Γ−7f I (1, 1)

−6Γ−5f I (3, 1) + Γ−7f I (5, 1)

]
= e−ĵθf

[
−6Γ−5f I (3, 1) + 6Γ−7f I (3, 1) + Γ−7f I (5, 1)

]
SI (5, 3) = e−ĵθf

[
−6Γ−5f I (3, 3) + 6Γ−7f I (3, 3) + Γ−7f I (5, 3)

]
SI (5, 5) = e−5ĵθf Γ−7f I (5, 5)

Sixth Order

SI (6, 0) = −7Γ−2f I (0, 0) + 42Γ−4f I (0, 0)− 70Γ−6f I (0, 0)

+35Γ−8f I (0, 0) + 14Γ−4f I (2, 0)

= −35Γ−6f I (2, 0) + 21Γ−8f I (2, 0)− 7Γ−6f I (4, 0)

+7Γ−8f I (4, 0) + Γ−8f I (6, 0)

SI (6, 2) = e−2ĵθf
[
14Γ−4f I (2, 2)− 356Γ−6f I (2, 2) + 21Γ−8f I (2, 2)

−7Γ−6f I (4, 2) + 7Γ−8f I (4, 2) + Γ−8f I (6, 2)

]
SI (6, 4) = e−4ĵθf

[
−7Γ−6f I (4, 4) + 7Γ−8f I (4, 4) + Γ−8f I (6, 4)

]
SI (6, 6) = e−6ĵθf Γ−8f I (6, 6)
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