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Image Annotation by Moments

Mustapha QOujaoura, Brahim Minaoui and Mohammed Fakir

The rapid growth of the Internet and multimedia information has generated a need
for technical indexing and searching of multimedia information, especially in image
retrieval. Image searching systems have been developed to allow searching in image
databases. However, these systems are still inefficient in terms of semantic image
searching by textual query. To perform semantic searching, it is necessary to be able
to transform the visual content of the images (colours, textures, shapes) into semantic
information. This transformation, called image annotation, assigns a legend or key-
words to a digital image. The traditional methods of image retrieval rely heavily on
manual image annotation which is very subjective, very expensive and impossible given
the size and the phenomenal growth of currently existing image databases. Therefore
it is quite natural that the research has emerged in order to find a computing solution
to the problem. It is thus that research work has quickly bloomed on the automatic
image annotation, aimed at reducing both the cost of annotation and the semantic
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gap between semantic concepts and digital low-level features. One of the approaches
to deal with image annotation is image classification. From the segmented image, the
feature vector is calculated and fed to the classifier in order to choose the appropriate
keyword for each region that represents the image content. In this chapter, the use of
Hu, Zernike and Legendre moments as feature extraction will be presented.

10.1 Introduction

Due to the large amounts of multimedia data prevalent on the Web, searching digital
information archives on the Internet and elsewhere has become a significant part of our
daily lives. Amongst the rapidly growing body of information there is a vast number of
digital images. The task of automated image retrieval is complicated by the fact that
many images do not have adequate textual descriptions. Retrieval of images through
analysis of their visual content is therefore an exciting and a worthwhile research
challenge.

With regard to the long standing problem of the semantic gap between low-level
image features and high-level human knowledge, the image retrieval community has
recently shifted its emphasis from low-level features analysis to high-level image se-
mantics extraction. Therefore, image semantics extraction is of great importance to
content-based image retrieval because it allows users to freely express what images
they want. Semantic content annotation is the basis for semantic content retrieval.
The aim of image annotation is to automatically obtain keywords that can be used to
represent the content of images.

Automatic object recognition and annotation are essential tasks in these image
retrieval systems. Indeed, annotated images play a very important role in information
processing; they are useful for image retrieval based on keywords and image content
management [7]. For that reason, a lot of research efforts have aimed at annotating
objects contained in visual streams. Image content annotation facilitates conceptual
image indexing and categorization to assist text-based image search, which can be
semantically more meaningful than search in the absence of any text [26, [30].

Manual annotation is not only boring but also not practical in many cases due to
the abundance of information. Most images are therefore available without adequate
annotation. Automatic image content annotation becomes a recent research interest
[26] 32]. It attempts to explore the visual characteristics of images and associate them
with image contents and semantics in order to use textual request for image retrieval
and searching; automatic image annotation is an effective technology for improving
the image retrieval.

The algorithms and systems used for image annotation are commonly divided into
those tasks:

e Image Segmentation
e Feature extraction

e Image Classification and Annotation
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After segmentation of the query image into several regions that are supposed to repre-
sent the object contained in that image, the features vector can be extracted carefully
in order to keep the maximum information while reducing the size of features vector.
This features vector is fed to the input of the trained classifier in order to choose the
appropriate keyword that can be used for image content indexing and retrieval. Those
tasks will be presented and discussed later in the following section.

10.2 Image Segmentation

The features’ vector, which is extracted from the entire image, loses local information.
So, it is necessary to segment an image into regions or objects of interest and make
use of local characteristics. The image segmentation is the process of partitioning a
digital image into multiple segments. It is very important in many applications for any
image processing, and it still remains a challenge for scientists and researchers. So far,
the efforts and attempts are still being made to improve the segmentation techniques.
With the improvement of computer processing capabilities, there are several possible
segmentation techniques of an image: threshold, region growing, active contours,
level sets, etc.. [[7]. After dividing the original image into several distinct regions that
correspond to objects in a scene, the feature vector can be extracted from each region
and can be considered as a representation of an object in the entire image.

10.3 Extraction and Computation of Moments

When the input data to an algorithm is too large to be processed, it will be transformed
into a reduced representation of features' set. Transforming the input data into the
set of features is called features' extraction. The extraction task transforms rich
contents of images into various features. In order to perform this task using this
reduced representation instead of the full size input, we need to extract carefully these
features [5]. It enhances not only the retrieval and annotation’s accuracy, but also
the annotation’s speed. So a large image database can be organized according to the
classification rule and therefore, the searching can be performed [31]. The moments
are widely used in many applications for feature's extraction due to their invariance to
scale, rotation and reflection change [19, [22] 20, [2I]. The use of moments for image
analysis and pattern recognition was inspired by Hu [II]. The most common used
moments are:

e Hu moments
e Legendre moments
e Zernike moments

The features vector of each one of these moments can be computed and extracted
for the 3 planes of color images. So, in addition to the shape information described
by moments, the color information contained in the image is also considered and
contributes to the improvement of image annotation accuracy.
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10.3.1 Hu Moments

Hu moments are widely used in the image processing and pattern recognition. They
are derived and calculated from geometric moments. The two-dimensional geometric
moments of order (p + ¢) of an image, that is represented by a real valued measurable
function f (z,y) in the interval range [a1, as] X [b1, ba], are defined as:

a b2
Mpq = //xpyqf(fc,y) dzdy, (10.1)
a1 by
where p,q = 0,1,2,...,00. The monomial product zPy? is the basis function for this

moment definition. A set of n moments consists of all M,, for p+ ¢ < n. The zero
order moment, My, of the function f (z,y)

as bo
Moo = / / f (z,y) dedy, (102)

ai by

represents the total of mass of the given image. The two first order moments

as bo
My — / / of (x,y) dudy, (10.3)

ay by

as bo
Moy = / / uf (,y) dzdy, (10.4)

ay by

represent the centre of mass of the given image. In terms of moment values, the
coordinates of the centre of mass are

My My
T=—" Y=

. 10.5
Moo Moo (105)

The central moments of an image, that is represented by f (x,y), are defined as:

az by

ta= [ [@=2 =9 f (er0) dody, (10.6)

ar by

where Z and § are defined in Eq.(10.5).

The central moments a,, defined in Eq.(10.6) are invariant under the translation
of coordinates. They can be normalized to preserve the invariance by scaling. For
p+q=2,3,...The Normalized central moments of an image are given by:

fipg = Lf;{ withy = Pty + 1. (10.7)
a

00 2
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Based on the theory of algebraic invariance, Hu [1I] derived relative and absolute
combinations of moments that are invariant to scale, position and orientation. Hu
defined the following seven functions, computed from the normalized central moments
through the order three, that are invariant to scale, translation and rotation changes:

¢1 = p20 + Hoz (10.8)

b2 = (a0 + po2)” + 43, (10.9)

¢35 = (30 — 3p12)” + (3pa1 — po3)’ (10.10)
¢4 = (30 + ,u12)2 + (21 + M03)2 (10.11)

o5 = (uso — 3piz2) (130 + t12) [(Mso + /L12)2 — 3 (por + /~L03)2] + (10.12)
(312 — po3) (p21 + 103) {3 (130 + p12)? — (pa1 + ,uos)z] -

6 = (20 — 1o2) {(Mso + p12)? = (p21 + M03)2} + (10.13)
4pnn (pso + pa2) (g1 + fos)

¢ = (3p21 — po3) (3o + p12) {(uso + /112)2 — 3 (por + Mo3)2} -

10.14
(130 — 3p12) (p21 + po3) {3 (130 + f12)° — (p21 + M03)2] ( )

The function ¢ through ¢g are invariant to rotation and reflection while ¢7 changes
sign under reflection.

10.3.2 Legendre Moments

Legendre moments, were first introduced by Teague [28]. Legendre moments are
orthogonal moments. They were used in several patterns' recognition [4].

The (p + ¢)-th order of Legendre moment, of an image with intensity function
f (z,y) is defined on the square [—1,1] x [—1,1], by:

+1
Lpg = Apq //Pp () Py (y) f (x,y) dzdy, (10.15)
5
where Ay = %“(Qqﬂ), p,g=0,1,2,...,00, and P, () is the p-th order Legendre

polynomial defined by:

P 1 dr »
Pp(z) = apra’ = ——— (2> = 1)", (10.16)
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or

R ey oy Y
Pp(x)f];) - (1’5’“)!2(9”'5"“)! p_k:wm. (10.17)

The Legendre polynomials have the generating function:

1 o0
m = E TpPp (x) , r =< 1. (1018)
p=0

By deriving the two parts of the generating function above, the recurrent formula
of the Legendre polynomials can be acquired straightforwardly:

éé (x/léixkr2> ::éé (;i;rpf%(x)> <

1 rT—r

o0
X = PP, ().
T I-2ra+r? p;p » (@)

Then we have:

(x—1) Zr”Pp ()= (1-2rz+ 7“2) Zprp_le (2).

p=0

And, the recurrent formula of the Legendre polynomials is:

{3ﬁlu):iﬁ5xﬂww-éhﬂr1@) (10.19)

P (zx)==z P(z)=1

The Legendre polynomials are a complete orthogonal basis set on the interval [—1, 1]:

+1
2
-1
where
s b ifp=a
rq — . )
0 ifp#q

is the Kronecker symbol.

The orthogonal property of Legendre polynomials implies no redundancy or overlap-
ping of information between the moments with different orders. This property enables
the contribution of each moment to be unique and independent from the information
in an image [28].
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To compute Legendre moments from a digital image, the integrals in Eq.(10.15)
are replaced by summations and the coordinates of the image must be normalized
into [—1,1]. Therefore, the numerical approximate form of Legendre moments, for a
discrete image of M x N pixels with intensity’s function f (x,y), is [10]:

Lpg = Apq Z Z Py (i) Py (y5) f (i, 95) (10.21)

where A\, = %, x; and y; denote the normalized pixel coordinates in the

range of [—1, 1], which are given by:

2 — (M — 1) 2j — (N —1)
= YT TNy (10.22)

The formula defined in Eq.([10.21)) is obtained by replacing the integrals in Eq.([10.15)
by summations and by normalizing the pixel coordinates of the image into the range
of [—1, 1] using Eq.(10.22).

Figure shows the pseudo code for computing Legendre moments of order
(p+ q) by equation defined in Eq.(10.21) and by using direct method for calculat-
ing Legendre polynomials. In this work the recurrent formula is used for calculating
Legendre polynomials in order to increase computation speed. Other fast and accurate
computation method of Legendre moments are presented in [23].

10.3.3 Zernike Moments

Zernike moments, as a type of moment function, are the mapping of an image onto
a set of complex Zernike polynomials. As these Zernike polynomials are orthogonal
to each other, Zernike moments can represent the properties of an image with no
redundancy or overlapping of information between the moments [12]. Due to these
characteristics, Zernike moments have been used as features set in many applications
[29].

The computation of Zernike moments from an input image consists of three steps:
computation of radial polynomials, computation of Zernike polynomials, and compu-
tation of Zernike moments by projecting the image onto the Zernike polynomials.

The procedure of obtaining Zernike moments from an input image begins with the
computation of radial polynomials. The real-valued radial polynomial is defined as:

qu(r):(pqu)/2 (- ) (p —s'rp 2s (10.23)
O % (e (e

with Ry, (1) = Ry, —q (7).

In Eq.(10.23), p and ¢ are generally called respectively order and repetition. The
order p is a non-negative integer, and the repetition ¢ is an integer satisfying p — |¢| =
even and |¢| < p. The radial polynomials satisfy the orthogonal properties for the
same repetition ¢,
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Function LegendrePolynonual (x, p)

px=0;
for k=0 top
if mod (p-k.2)=0
Bk
(-1)7 x*(p+k)
c= :
o N L BN
27 22K i prk :
2 )L 2 )
pE=px+c;
end if
end for
return px:
Function LegendreMoments (p, q)
1=0;

for 1=0 to (M-1)
for j=0 to (N-1)
2i—(M—-1) 2j—(N-1)
N =——————— Ly, =
! M-1 o N-1
px= LegendrePolynonual (x;, p) :
pyv= LegendrePolynonual (v;. q) :
L=L +f(.\'!.‘.1'j)*p.\'*yr :
end for
end for

L(2p+1)2g+1)

return

MxN

Figure 10.1: Pseudo code for computing Legendre

moments.
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2T
)

1
/ / Ry (r,0) Ry o (r,0) rdrdf = %, (10.24)
0 0

where J,,/ is the Kronecker symbol defined in the previous section.
Using the radial polynomial, complex-valued 2-D Zernike polynomials, which are
defined within a unit circle, are formed by:

Vig (2,y) = Vpg (rsin b, rcos) = R, , (r) 7, (10.25)

where, j = /=1, |r| < 1 is the length of the vector from the origin to the pixel at
(z,y), and 0 is the angle between vector r and the z axis.

The Zernike polynomials are a complete set of complex-valued functions orthogonal
on the unit disk 2 + 4% < 1.

* TO0rmpOn
[Vaim (@,9)]" Vg (2, y) dady = % (10.26)
24y2<1
or, in polar coordinates:
21 1
T0mpOng
Vam (1,0)]” Vg (r,0) rdrdf = Tl (10.27)
0

where the asterisk (* ) denotes the conjugated complex.
The complex Zernike moments of order p with repetition ¢ for an image function
f (x,y) are finally defined as:

2 W) £ ) dody, (10.28)
z24y2<1
or, in polar coordinates:
or 1
Vig (r,0)]” f (r,0) rdrdd, (10.29)
00

According to this definition, the procedure to compute Zernike moments can be
seen as an inner product between the image’s function and the Zernike polynomials.

To compute Zernike moments from a digital image, the integrals in Eq.([10.28)) and
in Eq.(10.29) are replaced by summations in addition to the coordinates of the image
which must be normalized into [0, 1] by a mapping transform. The two commonly used
cases of the transformations are shown in Fig.(10.2b) the image is over a unit circle
and Fig.(10.2d) the image is inside a unit circle. Based on Fig.(10.2b), the pixels,
which are located on the outside of the circle, are not involved in the computation
of the Zernike moments. Accordingly, Zernike moments, which are computed by the
mapping transformation, do not describe the properties of the outside of the unit circle
in the image. This can be considered as a default while calculating Zernike moments.
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The discrete form of the Zernike moments of an image size M x N is expressed as
follows:

M—-1N-— 1
p+1
b\ pq CL' y (.7;73/)
z=0 y:O
M 1N—-1 ’ (10'30)

Rpq (Tay) €™ ]qeﬂ’f(z Y)

r=

o

<
I
<]

where 0 < 3, <1 and X is a normalization factor.

In the discrete implementation of Zernike moments, the normalization factor A must
be the number of pixels located in the unit circle by the mapping transformation and
corresponds to the area of a unit circle 7 in the continuous domain. The transformed
0, phase and the distance 7, at the pixel of coordinates (x,y) are given by:

For Fig.(10.2b):

—tant (B V- 1D)/ (N 1)
Pt <(2$—(M—1))/(M_1)> ' (10.31)
20— (M -1\> [2y—(N-1)\>
e \/(M—l> i (N—l) : (10.32)
For Fig_:
ny = tan~"! <22g:((]]\\;:11))> (10-33)

- \/ (20— (M -1 + @2y - (N 1)) (1030

(M —1)>+ (N —1)?

Figure shows the pseudo code to compute Zernike moments of order p with
repetition ¢ by Eq.(10.31)) and by using direct method for radial polynomials.

Most of the computation time of Zernike moments is because of computation of
radial polynomials. Therefore, researchers have proposed faster methods that reduce
the factorial terms by utilizing the recurrence relations on the radial polynomials. Prata
[24] proposed a recurrence's relation that uses radial polynomials of lower order than
p as follows:

2rp
p+gq

—4q

p
Rpq (1) = P (r) - (10.35)

Rip—1)(g-1) (1) —

It is quite evident from the precedent equation that we can’t compute all cases of p
and ¢ while computing the radial polynomials. It is not possible to use Prata's equation
in cases where ¢ = 0 and p = ¢q. Those cases can be obtained by other methods. The
direct method can be used in cases where ¢ = 0, whereas the equation R, (r) = P
is used for p = q. The usage of direct method to compute radial polynomials in the
case of ¢ = 0 will considerably increase the computation time, especially when p is
large.
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e

£l

(a) (b)

(c)

Figure 10.2: (a) Image M x N, (b) mapping of image over a unit circle and (c)
mapping of image inside a unit circle.
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Function FadialPolinomisl (T, p, q)
radial=0 ;
for s=0 to (p-g)2

-1F(p—-sl
(p+ (- B
sl L |q| -5 ||| L |:}| -5 |_r
I J 2
radial=radial + ¢ * 1P
end for
refurm radial ;
Function Zemikehoments (p, q)
Zr=i;, Zi=l;
Counr=;

for =1 to (M-1)
for v=0 to (-1}

|+
M-1 J

(2y—(N-1))/(N-1) .
(2x—(M-1)(M-1))

N-1

t5‘=r:m"|

nr=l
F.adial= F.adizlPolinomial (1, p, q) ;

Zr=Zr+ f(x,V)* radial * cos(g * &) ;

Zi=Zi+ f(x.y) *radial *sin(g* )
Coun=Coumnmt+1;
end if
end for
end for

{p+1)Zr+i* Zi)
m N
Count

e

J- Yx— (M —1)} (-W-1 w

Figure 10.3: Pseudo code for computing Zernike moments.
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Kintner [14] proposed another recurrence’s relation that uses polynomials of a vary-
ing low-order p with a fixed repetition ¢ to compute the radial polynomials as shown
below:

(K2T2 + K3) Rip—2)q (1) + KsBp—a)q (1)

Rpq (r) = K,

(10.36)

The coefficients K7, K5, K3 and K, are given by

P+ (p—q) (p—2)
2

Ky=2p(p—1)(p—2)
Ks=—¢*(p—1)—p(p—1)(p—2)
-p(p+q—2)(p—q—2)

2

Ky =

Ky =

Like the equation in Eq.(10.36), Kintner's method cannot be applied in cases where
p =q and p — g = 2. For these two cases, in the normal approach, it is better to use
the direct method, although it takes too much time to compute. The following two
relations are used to avoid the involvement of direct method. For p = ¢ the equation
Ry, (1) = 1P is used, and for p — ¢ = 2 the recurrent relation below is used:

Rpq (1) = pRyp (1) — (p — 1) Ryq (1) (10.37)

This improved version of Kintner's method is denoted as modified Kintner's method.

Recently, Chong [3] presented the g-recursive method, which uses a relation of the
radial polynomials of fixed order p and varying repetition of q. The relation of the
radial polynomial is defined as:

Hj
qu (7") = HlRp(q+4) (T) + (H2 + 7’2> Rp(q+2) (’I") (1038)

where

= VD) ym,

Hy(p+q+4)(p—q—2)
4(q+3)

4(¢+2)(¢g+1)

(r+q+2)(p—2q)

H3(p+q+6)(p—q—4)
8

Hy = +(¢+2)

3 =

As the order p is fixed in Eq.(10.38)), the individual order of Zernike moments can
be calculated independently without referring to higher or lower order moments. All
these precedent methods focus only on the computation of Zernike radial polynomials
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Input Image
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H Legendre moments |
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L
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g I Y I Learning and training of the
: | Nearest Neighbor | classifiers
Annotation Results

Figure 10.4: Block diagram of the proposed annotation system.

and have some limitations if just a single Zernike moment is required because they use
recurrence’s relations.

From the experiments in [3], the combined use of both the g-recursive method and
modified Kintner's method takes the shortest time to compute a full set of Zernike mo-
ments followed by Kintner's method. Chong's method is much faster than other meth-
ods especially in computing Zernike moments with a fixed order. Therefore Chong's
method is more effective in cases, where only selected orders of Zernike moments are
used as feature vectors. The Zernike moments can be obtained fastly using the hybrid
method. The g-recursive method and modified Kintner's method can be combined
and used for fast calculation of the Zernike radial polynomials.

10.4 Image Classification and Annotation

The image annotation can be approached by the model or the classifier generated and
trained to bridge the gap between low-level feature vectors and high-level concepts;
a function is learned which can directly correspond the low-level feature sets to high-
level conceptual classes. There are several types of classifier that are used singly for
classification. Each classifier is found suitable to classify a particular kind of feature
vectors depending on their characteristics. The Neural Networks, Support Vector Ma-
chines (SVM) and K-Nearest Neighbour classifiers are used in this chapter. The block
diagram of the image annotation system adopted in this work is shown in Fig.(10.4).

The system contains two parts: the first one is reserved to a reference database of
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image already annotated by experts (offline and manual annotation). This database is
used for modelling and training the classifiers (Neural Network, Bayesian Network and
Multiclass SVM). The second one can be considered as the direct image annotation
(online annotation), which is the subject of this chapter. To achieve this goal, firstly,
the query image is segmented into regions that represent objects in the image, secondly,
the features vector of each region is computed and extracted from the image, and
those features are finally fed into input of the classifiers (Neural Network, Bayesian
Network, Multiclass SVM and Nearest Neighbour Classifiers). These classifiers decide
and choose the appropriate keywords for annotation tasks of the object.

10.4.1 Nearest Neighbor Classifier

The nearest neighbour classifier is used to compare the feature vector of the input
image and the feature vectors stored in the database. It is obtained by finding the dis-
tance between the prototype image and the database. The class is found by measuring
the distance between a feature vector of input image and feature vectors of images in
reference database. The Euclidean distance measurement is used in this paper, but
other distance measurements can also be used [1].

Let X1, X5, ..., Xi be the k class features vectors in the database and X, the feature
vector of the query image. The feature vector with the minimum distance is found to
be the closest matching vector. It is given by:

je{1,2,...,

41X, X)) = _min ¢Z<xq<z’>—xj<i>>2 (1039)

The nearest neighbour classifier does not need any training phase. But, if the
database is very large, it takes a considerable time to calculate all the distances between
the query image and database classes.

10.4.2 Neural Networks

Neural networks (or artificial neural networks) learn by experience, generalize from
previous experiences to new ones, and can make decisions [2, 27]. A multilayer network
consists of an input layer including a set of input nodes, one or more hidden layers of
nodes, and an output layer of nodes. Figure shows an example of a three layer
network used in this paper, having an input layer formed by M nodes, one hidden layer
formed by L nodes, and an output layer formed by N nodes. This neural network is
trained to classify inputs according to target classes. The training input data are
loaded from the reference database while the target data should consist of vectors
of all zero values except for a one element, where its index is the class they are to
represent. The transfer function used in this tree layer neural network is hyperbolic
tangent sigmoid transfer function defined by:

f@)y=2/(1+e?)-1 (10.40)
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Input Layer Hidden Layer CQutput Layer

Figure 10.5: The three layer neural network.

According to authors in [15], the number of neurons in the hidden layer is approxi-
mately equal to:

L=E (1 +VM(N+ 2)) (10.41)
where
e E (z) denotes the integer part of z

e M and N are respectively the number of neurons in the input and output layers

10.4.3 Support Vector Machines (SVM)

Support vector machines (SVMs) were originally designed for binary classification.
SVM is a classification method which is based on finding a hyper-plan that separates
data sets into two classes. Several methods have been proposed to construct a multi-
class SVM classifier by combining one-against-one or one-against-all binary classifiers
as shown in Fig.. The data sets can be linearly separable or nonlinearly separable.
The nonlinearly separable cases require the use of kernel function in order to obtain
linearly separable data sets [8] [25]. The one-against-one and the one-against-all binary
classifier can be used. These classifiers are based on the Gaussian kernel function
defined by:

202

2
K (z,y) = exp <_xy|> (10.42)
where o = 1. Many other kernel functions can be used for each binary classifier.

10.4.3.1 One-against-all binary classifier

The one-against-all binary classifier contains N binary classifier, where N is the number
of class in data sets. The i*" binary SVM is trained with all of the data examples in
the i*" class with positive labels, and all other data examples with negative labels. To
construct a one-against-all multiclass SVM model from binary classifier, the classes are
divided into two groups: the first group is formed by one class, and the second group
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Figure 10.6: Structure of the multiclass SVM classifier, a) one-against-all , b) one
against-one.

is all the other classes. The obtained SVM binary classifier is trained to decide if the
class is from the first group or it belongs to the second group of classes. This process
is repeated for the second group that contains more than two classes until having
only one class for each group. The process must stop there. So, by following this
way, multiclass SVM is transformed to a multiple SVM binary classifier. Each SVM
binary classifier is trained using a matrix of training data, where each row corresponds
to features extracted as an observation from a class. After the training phase, the
multiclass SVM model is able to decide the correct class for an input features vector.
To classify an object, its input features vector is presented iteratively to the i against
all binary classifier from the first to the N* classifier while the result is negative. When
the i binary classifier gives a positive result, the process stops. This means that the
object belongs to the i'" class.

10.4.3.2 One-against-one binary classifier

Another major method is called the one-against-one binary classifier. From N class
in data sets, this method constructs N (N — 1) /2 binary classifiers where each one is
trained on data from two classes. To design and extend SVM binary classifier into a
one-against-one multiclass SVM, two groups of data examples are constructed from
two classes. The obtained SVM binary classifier is trained to decide if the class is from
the first class or it belongs to the second class. This process is repeated for another
couple of classes until finishing all the possible couples of the classes from data sets.
So, by following this way, multiclass SVM is transformed to a multiple N (N — 1) /2
SVM binary classifier. Each SVM binary classifier is trained using a matrix of training
data, where each row corresponds to the features extracted as an observation from a
class. When classifying an object with an input features vector, each binary classifier
from the multiclass SVM one-against-one model decides and votes for only one class.
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Figure 10.7: Naive Bayes classifier structure.

The class with the majority votes is the correct class which the object belongs to.

10.4.4 Bayesian Network

The construction of a Bayesian network consists of finding a structure or a graph and
estimating its parameters by machine learning. In the case of the classification, the
Bayesian network can have a class node C; and many attribute nodes X;. The naive
Bayes classifier is used in this paper due to its robustness and simplicity. Figure[10.7
illustrates its graphical structure.

To estimate the Bayesian network parameters and probabilities, Gaussian distribu-
tions are generally used. The conditional distribution of a node relative to its parent is
a Gaussian distribution whose mean is a linear combination of the parent’s value and
whose variance is independent of the parent's value [13] :

2
]. —]. i Uij
P (Xi|Pa(X;)) = TU?&TP ﬁ Ti— | M +j§_:1 7? (xj - Nj)
(10.43)
where

e Pa(X;)are the parents of X;

® [ii,1tj,0; and o; are the means and variances of the attributes X; and X;
respectively without considering their parents

e n; is the number of parents
e 0;; is the regression matrix of weights.

After the learning of the parameters and structure of a Bayesian network, the Bayesian
inference is used to calculate the probability of any variable in a probabilistic model
from the observation of one or more other variables. So, the chosen class C; is the
one that maximizes these probabilities [16], [18]:
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P (C)ITj=, P(X;|Pa(X;),C;) if X; has parents

P(COTT, P (X,10) clse (10.44)

P(Ci|X) = {

For the naive Bayes classifier, the absence of parents and the variables independence
assumption are used to write the posterior probability of each class as given in the
following equation [17]:

P(Cy|X) = HP (X;1Ch) (10.45)

Therefore, the decision rule d of an attribute X is given by:

d(X) = argmaxP (C;|X)
= argmazP (X|C;) P (C;)
c, (10.46)

= argmazP (C P (X,|Cy)

The class with maximum probability leads to the suitable character for the input
image.

10.5 Experiments and Results

In our experiments, for each region that represent an object from one channel of
the query image, the number of input features extracted using Hu invariants features
extraction method is 7 (hul, hu2, hu3, hu4, hu5, hu6, hu7) while the number of
input features extracted using the order 4 of Zernike moments is 9 (Zyo, Z11, Z20,
Zoo, Z31, Z33, Zao, Za2, Z44) and the number of input features extracted using the
order 3 of Legendre moments is 10 (LQ(), L()l, LQQ, Log, LlO» Llla L12, LQQ, L21,
L3p). So, in the case of color image, the resulted features vector is composed from
21 elements for Hu moments, 27 elements for Zernike moments and 30 elements for
Legendre moments. These inputs are presented and fed to the classifier; which is the
multiclass SVM, the neural network or the nearest neighbour classifier for testing to
do matching with the feature values in the reference database.

Figure[10.8|shows some examples of image objects from ETH-80 [9] image database
and COIL-100 [6] image database used in our experiments. The experiments were
performed based on different classes of objects.

The accuracy of image annotation is evaluated by the precision rate which is the
number of correct results divided by the number of all returned results. All the ex-
periments are conducted using two databases: ETH-80 database containing a set of 8
different object images [9] and COIL-100 database which contains color images of 100
objects with 72 different angle views [6]. The proposed image annotation system has
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(b)

Figure 10.8: Some examples of objects from: a) ETH-80 image database, b) COIL-100
image database.

Table 10.1: Single classifier and descriptor mean annotation rates and total execution
time for image from ETH-80 and COIL-100 databases.

. Classifier
Database Descriptor -
Neural Bayesian
K-NN SVM-One SVM-AIl

Network Network

I Hu 59.80% 53.75% 58.13% 61.53% 70.00%

':'_: Zernike 68.41% 62.50% 65.00% 69.70% 76.32%

Annotation “ Legendre 78.55% 73.75% 75.00% 79.91% 82.50%
Rates § Hu 50.00% 43.75% 43.75% 61.25% 65.00%
(:l; Zernike 71.25% 60.00% 65.00% 73.75% 75.50%

© Legendre 73.50% 70.00% 75.00% 77.50% 80.00%

1 Hu 121.96 259.08 82.89 146.72 205.28

) E Zernike 3213.23 3820.65 3405.48 3338.17 3482.07

Execution W
Ti ) Legendre 10110.55 10490.77 12743.99 13245.28 11408.25
ime In
8 Hu 84.91 158.42 74.35 144.3 108.13
seconds i

<:)‘ Zernike 3088.51 3216.42 2641.45 2674.8 3101.21

© Legendre 11976.21 12127.88 12225.79 12866.25 9802.82

been implemented and tested on a core 2 Duo personnel computer using MATLAB
software. The annotation results for each classifier and each type of moments for
image from ETH-80 and COIL-100 databases are presented in Table [10.1]

We observe from the above results that the Legendre moments with Bayesian net-
works classifier give good results.

Figure presents the annotation rates for each classifier and each type of mo-
ments for image from ETH-80 and COIL-100 databases, while Fig.(10.10) presents the
approximate execution times for each classifier and each type of moments for image
from ETH-80 and COIL-100 databases

The confusion matrix given in Fig.(10.11)) shows improperly annotated objects (in-
dicated by the red color) in the case of using Legendre moments as descriptors and
Bayesian networks as classifier for images from ETH-80 database.

Figure shows the confusion matrix in the case of using Legendre moments
as a descriptor and the Bayesian network as classifier for images from the COIL-100
image database.



Image Annotation by Moments 247

90.00%
80.00% MENN
70.00%
HSVM-One
o 60.00% -
2
[
= 50.00% -
-% W svM-all
< 40.00% -
=
<
30.00% - HMeural Network
20.00% -
10.00% - W Bayesian Network
0.00% -
Hu Zernike |Legendre Hu Zernike | Legendre
ETH-80 COIL-100

Figure 10.9: Mean annotation rates for each classifier and each type of moments for
image from ETH-80 and COIL-100 databases.
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Figure 10.10: Total execution times for each classifier and each type of moments for
image from ETH-80 and COIL-100 databases.
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Legendre Naive Bayes Confusion Matrix
Annotation Rate: 82.50 %.
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Figure 10.11: Confusion matrix using Legendre moments and Naive Bayes network for
image from ETH-80 database.
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Figure 10.12: Confusion matrix using Legendre moments and Naive Bayes network for
image from COIL-100 database.
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annotation results: green apple. annotation results: red pepper.
(a) (b)

Figure 10.13: Example of image annotation results using a set of 8 images for training
the classifiers from : a) ETH-80 database and b) COIL-100 database.

For each classifier and for both images databases ETH-80 and COIL-100 containing
objects in general well-defined by shapes, Legendre descriptors allow to get the best
image annotation rate.

Figure [10.13]| presents an example of annotation results obtained by using the pre-
sented system while the Graphical User Interface is illustrated in Fig.(10.14).

The image annotation results are also affected by the accuracy of the image seg-
mentation method; in most cases, it is very difficult to have an automatic ideal seg-
mentation. This problem decreases the annotation rates. Therefore, any annotation
attempt must consider image segmentation as an important step, not only for au-
tomatic image annotation system, but also for the other systems which require its
use. The Legendre moments and Zernike moments are very expensive regarding the
processing and computation time, so any use of them in real time for an online image
annotation system will be difficult and impracticable.

10.6 Conclusion

In this chapter, we have discussed image annotation via moment’s method and com-
pared them to each other. The experimental results showed that the annotation system
based on Legendre moments with Bayesian networks gives good results for images that
are well and properly segmented. However, Image segmentation remains a challenge
that needs more attention in order to increase precision and accuracy of the image
annotation system.
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— Results:

[ D:Doc matlab projectitesti.png

annotation results: green apple; gray dog; white cup; brown tomato.

Figure 10.14: Graphical User Interface (GUI).
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