
CHAPTER 10

Image Annotation by Moments

Mustapha Oujaoura, Brahim Minaoui and Mohammed Fakir

The rapid growth of the Internet and multimedia information has generated a need
for technical indexing and searching of multimedia information, especially in image
retrieval. Image searching systems have been developed to allow searching in image
databases. However, these systems are still ine�cient in terms of semantic image
searching by textual query. To perform semantic searching, it is necessary to be able
to transform the visual content of the images (colours, textures, shapes) into semantic
information. This transformation, called image annotation, assigns a legend or key-
words to a digital image. The traditional methods of image retrieval rely heavily on
manual image annotation which is very subjective, very expensive and impossible given
the size and the phenomenal growth of currently existing image databases. Therefore
it is quite natural that the research has emerged in order to �nd a computing solution
to the problem. It is thus that research work has quickly bloomed on the automatic
image annotation, aimed at reducing both the cost of annotation and the semantic
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gap between semantic concepts and digital low-level features. One of the approaches
to deal with image annotation is image classi�cation. From the segmented image, the
feature vector is calculated and fed to the classi�er in order to choose the appropriate
keyword for each region that represents the image content. In this chapter, the use of
Hu, Zernike and Legendre moments as feature extraction will be presented.

10.1 Introduction

Due to the large amounts of multimedia data prevalent on the Web, searching digital
information archives on the Internet and elsewhere has become a signi�cant part of our
daily lives. Amongst the rapidly growing body of information there is a vast number of
digital images. The task of automated image retrieval is complicated by the fact that
many images do not have adequate textual descriptions. Retrieval of images through
analysis of their visual content is therefore an exciting and a worthwhile research
challenge.

With regard to the long standing problem of the semantic gap between low-level
image features and high-level human knowledge, the image retrieval community has
recently shifted its emphasis from low-level features analysis to high-level image se-
mantics extraction. Therefore, image semantics extraction is of great importance to
content-based image retrieval because it allows users to freely express what images
they want. Semantic content annotation is the basis for semantic content retrieval.
The aim of image annotation is to automatically obtain keywords that can be used to
represent the content of images.

Automatic object recognition and annotation are essential tasks in these image
retrieval systems. Indeed, annotated images play a very important role in information
processing; they are useful for image retrieval based on keywords and image content
management [7]. For that reason, a lot of research e�orts have aimed at annotating
objects contained in visual streams. Image content annotation facilitates conceptual
image indexing and categorization to assist text-based image search, which can be
semantically more meaningful than search in the absence of any text [26, 30].

Manual annotation is not only boring but also not practical in many cases due to
the abundance of information. Most images are therefore available without adequate
annotation. Automatic image content annotation becomes a recent research interest
[26, 32]. It attempts to explore the visual characteristics of images and associate them
with image contents and semantics in order to use textual request for image retrieval
and searching; automatic image annotation is an e�ective technology for improving
the image retrieval.

The algorithms and systems used for image annotation are commonly divided into
those tasks:

• Image Segmentation

• Feature extraction

• Image Classi�cation and Annotation
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After segmentation of the query image into several regions that are supposed to repre-
sent the object contained in that image, the features vector can be extracted carefully
in order to keep the maximum information while reducing the size of features vector.
This features vector is fed to the input of the trained classi�er in order to choose the
appropriate keyword that can be used for image content indexing and retrieval. Those
tasks will be presented and discussed later in the following section.

10.2 Image Segmentation

The features' vector, which is extracted from the entire image, loses local information.
So, it is necessary to segment an image into regions or objects of interest and make
use of local characteristics. The image segmentation is the process of partitioning a
digital image into multiple segments. It is very important in many applications for any
image processing, and it still remains a challenge for scientists and researchers. So far,
the e�orts and attempts are still being made to improve the segmentation techniques.
With the improvement of computer processing capabilities, there are several possible
segmentation techniques of an image: threshold, region growing, active contours,
level sets, etc.. [7]. After dividing the original image into several distinct regions that
correspond to objects in a scene, the feature vector can be extracted from each region
and can be considered as a representation of an object in the entire image.

10.3 Extraction and Computation of Moments

When the input data to an algorithm is too large to be processed, it will be transformed
into a reduced representation of features' set. Transforming the input data into the
set of features is called features' extraction. The extraction task transforms rich
contents of images into various features. In order to perform this task using this
reduced representation instead of the full size input, we need to extract carefully these
features [5]. It enhances not only the retrieval and annotation's accuracy, but also
the annotation's speed. So a large image database can be organized according to the
classi�cation rule and therefore, the searching can be performed [31]. The moments
are widely used in many applications for feature's extraction due to their invariance to
scale, rotation and re�ection change [19, 22, 20, 21]. The use of moments for image
analysis and pattern recognition was inspired by Hu [11]. The most common used
moments are:

• Hu moments

• Legendre moments

• Zernike moments

The features vector of each one of these moments can be computed and extracted
for the 3 planes of color images. So, in addition to the shape information described
by moments, the color information contained in the image is also considered and
contributes to the improvement of image annotation accuracy.
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10.3.1 Hu Moments

Hu moments are widely used in the image processing and pattern recognition. They
are derived and calculated from geometric moments. The two-dimensional geometric
moments of order (p+ q) of an image, that is represented by a real valued measurable
function f (x, y) in the interval range [a1, a2]× [b1, b2], are de�ned as:

Mpq =

a2ˆ

a1

b2ˆ

b1

xpyqf (x, y) dxdy, (10.1)

where p, q = 0, 1, 2, ...,∞. The monomial product xpyq is the basis function for this
moment de�nition. A set of n moments consists of all Mpq for p + q ≤ n. The zero
order moment, M00, of the function f (x, y)

M00 =

a2ˆ

a1

b2ˆ

b1

f (x, y) dxdy, (10.2)

represents the total of mass of the given image. The two �rst order moments

M10 =

a2ˆ

a1

b2ˆ

b1

xf (x, y) dxdy, (10.3)

M01 =

a2ˆ

a1

b2ˆ

b1

yf (x, y) dxdy, (10.4)

represent the centre of mass of the given image. In terms of moment values, the
coordinates of the centre of mass are

x̄ =
M10

M00
, ȳ =

M01

M00
. (10.5)

The central moments of an image, that is represented by f (x, y), are de�ned as:

apq =

a2ˆ

a1

b2ˆ

b1

(x− x̄)
p

(y − ȳ)
q
f (x, y) dxdy, (10.6)

where x̄ and ȳ are de�ned in Eq.(10.5).
The central moments apq de�ned in Eq.(10.6) are invariant under the translation

of coordinates. They can be normalized to preserve the invariance by scaling. For
p+ q = 2, 3, ...The Normalized central moments of an image are given by:

µpq =
apq
aγ00

, with γ =
p+ q

2
+ 1. (10.7)
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Based on the theory of algebraic invariance, Hu [11] derived relative and absolute
combinations of moments that are invariant to scale, position and orientation. Hu
de�ned the following seven functions, computed from the normalized central moments
through the order three, that are invariant to scale, translation and rotation changes:

φ1 = µ20 + µ02 (10.8)

φ2 = (µ20 + µ02)
2

+ 4µ2
11 (10.9)

φ3 = (µ30 − 3µ12)
2

+ (3µ21 − µ03)
2

(10.10)

φ4 = (µ30 + µ12)
2

+ (µ21 + µ03)
2

(10.11)

φ5 = (µ30 − 3µ12) (µ30 + µ12)
[
(µ30 + µ12)

2 − 3 (µ21 + µ03)
2
]

+

(3µ12 − µ03) (µ21 + µ03)
[
3 (µ30 + µ12)

2 − (µ21 + µ03)
2
] (10.12)

φ6 = (µ20 − µ02)
[
(µ30 + µ12)

2 − (µ21 + µ03)
2
]

+

4µ11 (µ30 + µ12) (µ21 + µ03)
(10.13)

φ7 = (3µ21 − µ03) (µ30 + µ12)
[
(µ30 + µ12)

2 − 3 (µ21 + µ03)
2
]
−

(µ30 − 3µ12) (µ21 + µ03)
[
3 (µ30 + µ12)

2 − (µ21 + µ03)
2
] (10.14)

The function φ1 through φ6 are invariant to rotation and re�ection while φ7 changes
sign under re�ection.

10.3.2 Legendre Moments

Legendre moments, were �rst introduced by Teague [28]. Legendre moments are
orthogonal moments. They were used in several patterns' recognition [4].
The (p+ q)-th order of Legendre moment, of an image with intensity function

f (x, y) is de�ned on the square [−1, 1]× [−1, 1], by:

Lpq = λpq

ˆ +1ˆ

−1

Pp (x)Pq (y) f (x, y) dxdy, (10.15)

where λpq = (2p+1)(2q+1)
4 , p, q = 0, 1, 2, ...,∞, and Pp (x) is the p-th order Legendre

polynomial de�ned by:

Pp (x) =

p∑
k=0

αpkx
k =

1

2pp!

d p

dxp
(
x2 − 1

)p
, (10.16)
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or

Pp (x) =

p∑
k=0

 (−1)
p−k
2 xk (p+ k)!

2pk!
(
p−k
2

)
!
(
p+k
2

)
!


p−k=even

. (10.17)

The Legendre polynomials have the generating function:

1√
1− 2rx+ r2

=

∞∑
p=0

rpPp (x) , r ≺ 1. (10.18)

By deriving the two parts of the generating function above, the recurrent formula
of the Legendre polynomials can be acquired straightforwardly:

d

dr

(
1√

1− 2rx+ r2

)
=

d

dr

( ∞∑
p=0

rpPp (x)

)
⇔

1√
1− 2rx+ r2

× x− r
1− 2rx+ r2

=

∞∑
p=0

prp−1Pp (x) .

Then we have:

(x− r)
∞∑
p=0

rpPp (x) =
(
1− 2rx+ r2

) ∞∑
p=0

prp−1Pp (x) .

And, the recurrent formula of the Legendre polynomials is:

{
Pp+1 (x) = 2p+1

p+1 xPp (x)− p
p+1Pp−1 (x)

P1 (x) = x, P0 (x) = 1
(10.19)

The Legendre polynomials are a complete orthogonal basis set on the interval [−1, 1]:

+1ˆ

−1

Pp (x)Pq (x) dx =
2

2p+ 1
δpq, (10.20)

where

δpq =

{
1 if p = q

0 if p 6= q
,

is the Kronecker symbol.
The orthogonal property of Legendre polynomials implies no redundancy or overlap-

ping of information between the moments with di�erent orders. This property enables
the contribution of each moment to be unique and independent from the information
in an image [28].
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To compute Legendre moments from a digital image, the integrals in Eq.(10.15)
are replaced by summations and the coordinates of the image must be normalized
into [−1, 1]. Therefore, the numerical approximate form of Legendre moments, for a
discrete image of M ×N pixels with intensity's function f (x, y), is [10]:

Lpq = λpq

M−1∑
i=0

N−1∑
j=0

Pp (xi)Pq (yj) f (xi, yj) , (10.21)

where λpq = (2p+1)(2q+1)
M×N , xi and yj denote the normalized pixel coordinates in the

range of [−1, 1], which are given by:

xi =
2i− (M − 1)

M − 1
, yj =

2j − (N − 1)

N − 1
. (10.22)

The formula de�ned in Eq.(10.21) is obtained by replacing the integrals in Eq.(10.15)
by summations and by normalizing the pixel coordinates of the image into the range
of [−1, 1] using Eq.(10.22).
Figure 10.1 shows the pseudo code for computing Legendre moments of order

(p+ q) by equation de�ned in Eq.(10.21) and by using direct method for calculat-
ing Legendre polynomials. In this work the recurrent formula is used for calculating
Legendre polynomials in order to increase computation speed. Other fast and accurate
computation method of Legendre moments are presented in [23].

10.3.3 Zernike Moments

Zernike moments, as a type of moment function, are the mapping of an image onto
a set of complex Zernike polynomials. As these Zernike polynomials are orthogonal
to each other, Zernike moments can represent the properties of an image with no
redundancy or overlapping of information between the moments [12]. Due to these
characteristics, Zernike moments have been used as features set in many applications
[29].
The computation of Zernike moments from an input image consists of three steps:

computation of radial polynomials, computation of Zernike polynomials, and compu-
tation of Zernike moments by projecting the image onto the Zernike polynomials.
The procedure of obtaining Zernike moments from an input image begins with the

computation of radial polynomials. The real-valued radial polynomial is de�ned as:

Rp,q (r) =

(p−|q|)/2∑
s=0

(−1)
s

(p− s)!rp−2s

s!
(
p+|q|

2 − s
)

!
(
p−|q|

2 − s
)

!
, (10.23)

with Rp,q (r) = Rp,−q (r).
In Eq.(10.23), p and q are generally called respectively order and repetition. The

order p is a non-negative integer, and the repetition q is an integer satisfying p−|q| =
even and |q| ≤ p. The radial polynomials satisfy the orthogonal properties for the
same repetition q,
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Figure 10.1: Pseudo code for computing Legendre moments.
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2πˆ

0

1ˆ

0

Rp,q (r, θ)Rp′,q (r, θ) rdrdθ =
δpp′

2 (p+ 1)
, (10.24)

where δpp′ is the Kronecker symbol de�ned in the previous section.
Using the radial polynomial, complex-valued 2-D Zernike polynomials, which are

de�ned within a unit circle, are formed by:

Vpq (x, y) = Vpq (r sin θ, r cos θ) = Rp,q (r) ejqθ, (10.25)

where, j =
√
−1, |r| ≤ 1 is the length of the vector from the origin to the pixel at

(x, y), and θ is the angle between vector r and the x axis.
The Zernike polynomials are a complete set of complex-valued functions orthogonal

on the unit disk x2 + y2 ≤ 1.

¨

x2+y2≤1

[Vnm (x, y)]
∗
Vpq (x, y) dxdy =

πδmpδnq
m+ 1

, (10.26)

or, in polar coordinates:

2πˆ

0

1ˆ

0

[Vnm (r, θ)]
∗
Vpq (r, θ) rdrdθ =

πδmpδnq
m+ 1

, (10.27)

where the asterisk (*) denotes the conjugated complex.
The complex Zernike moments of order p with repetition q for an image function

f (x, y) are �nally de�ned as:

Zpq =
p+ 1

π

¨

x2+y2≤1

[Vpq (x, y)]
∗
f (x, y) dxdy , (10.28)

or, in polar coordinates:

Zpq =
p+ 1

π

2πˆ

0

1ˆ

0

[Vpq (r, θ)]
∗
f (r, θ) rdrdθ , (10.29)

According to this de�nition, the procedure to compute Zernike moments can be
seen as an inner product between the image's function and the Zernike polynomials.
To compute Zernike moments from a digital image, the integrals in Eq.(10.28) and

in Eq.(10.29) are replaced by summations in addition to the coordinates of the image
which must be normalized into [0, 1] by a mapping transform. The two commonly used
cases of the transformations are shown in Fig.(10.2b) the image is over a unit circle
and Fig.(10.2c) the image is inside a unit circle. Based on Fig.(10.2b), the pixels,
which are located on the outside of the circle, are not involved in the computation
of the Zernike moments. Accordingly, Zernike moments, which are computed by the
mapping transformation, do not describe the properties of the outside of the unit circle
in the image. This can be considered as a default while calculating Zernike moments.
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The discrete form of the Zernike moments of an image size M × N is expressed as
follows:

Zpq =
p+ 1

λ

M−1∑
x=0

N−1∑
y=0

[Vpq (x, y)]
∗
f (x, y)

=
p+ 1

λ

M−1∑
x=0

N−1∑
y=0

Rpq (rxy) e−jqθxyf (x, y)

, (10.30)

where 0 ≤ rxy ≤ 1 and λ is a normalization factor.
In the discrete implementation of Zernike moments, the normalization factor λ must

be the number of pixels located in the unit circle by the mapping transformation and
corresponds to the area of a unit circle π in the continuous domain. The transformed
θxy phase and the distance rxy at the pixel of coordinates (x, y) are given by:
For Fig.(10.2b):

θxy = tan−1
(

(2y − (N − 1)) / (N − 1)

(2x− (M − 1)) / (M − 1)

)
, (10.31)

rxy =

√(
2x− (M − 1)

M − 1

)2

+

(
2y − (N − 1)

N − 1

)2

. (10.32)

For Fig.(10.2c):

θxy = tan−1
(

2y − (N − 1)

2x− (M − 1)

)
(10.33)

rxy =

√
(2x− (M − 1))

2
+ (2y − (N − 1))

2

(M − 1)
2

+ (N − 1)
2 . (10.34)

Figure 10.3 shows the pseudo code to compute Zernike moments of order p with
repetition q by Eq.(10.31) and by using direct method for radial polynomials.
Most of the computation time of Zernike moments is because of computation of

radial polynomials. Therefore, researchers have proposed faster methods that reduce
the factorial terms by utilizing the recurrence relations on the radial polynomials. Prata
[24] proposed a recurrence's relation that uses radial polynomials of lower order than
p as follows:

Rpq (r) =
2rp

p+ q
R(p−1)(q−1) (r)− p− q

p+ q
R(p−2)q (r) . (10.35)

It is quite evident from the precedent equation that we can't compute all cases of p
and q while computing the radial polynomials. It is not possible to use Prata's equation
in cases where q = 0 and p = q. Those cases can be obtained by other methods. The
direct method can be used in cases where q = 0, whereas the equation Rpp (r) = rp

is used for p = q. The usage of direct method to compute radial polynomials in the
case of q = 0 will considerably increase the computation time, especially when p is
large.
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(a) (b)

(c)

Figure 10.2: (a) Image M × N , (b) mapping of image over a unit circle and (c)
mapping of image inside a unit circle.
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Figure 10.3: Pseudo code for computing Zernike moments.
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Kintner [14] proposed another recurrence's relation that uses polynomials of a vary-
ing low-order p with a �xed repetition q to compute the radial polynomials as shown
below:

Rpq (r) =

(
K2r

2 +K3

)
R(p−2)q (r) +K4R(p−4)q (r)

K1
(10.36)

The coe�cients K1,K2,K3 and K4 are given by

K1 =
(p+ q) (p− q) (p− 2)

2
K2 = 2p (p− 1) (p− 2)

K3 = −q2 (p− 1)− p (p− 1) (p− 2)

K4 =
−p (p+ q − 2) (p− q − 2)

2

Like the equation in Eq.(10.36), Kintner's method cannot be applied in cases where
p = q and p− q = 2. For these two cases, in the normal approach, it is better to use
the direct method, although it takes too much time to compute. The following two
relations are used to avoid the involvement of direct method. For p = q the equation
Rpp (r) = rp is used, and for p− q = 2 the recurrent relation below is used:

Rpq (r) = pRpp (r)− (p− 1)Rqq (r) (10.37)

This improved version of Kintner's method is denoted as modi�ed Kintner's method.
Recently, Chong [3] presented the q-recursive method, which uses a relation of the

radial polynomials of �xed order p and varying repetition of q. The relation of the
radial polynomial is de�ned as:

Rpq (r) = H1Rp(q+4) (r) +

(
H2 +

H3

r2

)
Rp(q+2) (r) (10.38)

where

H1 =
(q + 4) (q + 3)

2
− (q + 4)H2 +

H3 (p+ q + 6) (p− q − 4)

8

H2 =
H3 (p+ q + 4) (p− q − 2)

4 (q + 3)
+ (q + 2)

H3 =
4 (q + 2) (q + 1)

(p+ q + 2) (p− q)

As the order p is �xed in Eq.(10.38), the individual order of Zernike moments can
be calculated independently without referring to higher or lower order moments. All
these precedent methods focus only on the computation of Zernike radial polynomials
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Figure 10.4: Block diagram of the proposed annotation system.

and have some limitations if just a single Zernike moment is required because they use
recurrence's relations.
From the experiments in [3], the combined use of both the q-recursive method and

modi�ed Kintner's method takes the shortest time to compute a full set of Zernike mo-
ments followed by Kintner's method. Chong's method is much faster than other meth-
ods especially in computing Zernike moments with a �xed order. Therefore Chong's
method is more e�ective in cases, where only selected orders of Zernike moments are
used as feature vectors. The Zernike moments can be obtained fastly using the hybrid
method. The q-recursive method and modi�ed Kintner's method can be combined
and used for fast calculation of the Zernike radial polynomials.

10.4 Image Classi�cation and Annotation

The image annotation can be approached by the model or the classi�er generated and
trained to bridge the gap between low-level feature vectors and high-level concepts;
a function is learned which can directly correspond the low-level feature sets to high-
level conceptual classes. There are several types of classi�er that are used singly for
classi�cation. Each classi�er is found suitable to classify a particular kind of feature
vectors depending on their characteristics. The Neural Networks, Support Vector Ma-
chines (SVM) and K-Nearest Neighbour classi�ers are used in this chapter. The block
diagram of the image annotation system adopted in this work is shown in Fig.(10.4).
The system contains two parts: the �rst one is reserved to a reference database of
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image already annotated by experts (o�ine and manual annotation). This database is
used for modelling and training the classi�ers (Neural Network, Bayesian Network and
Multiclass SVM). The second one can be considered as the direct image annotation
(online annotation), which is the subject of this chapter. To achieve this goal, �rstly,
the query image is segmented into regions that represent objects in the image, secondly,
the features vector of each region is computed and extracted from the image, and
those features are �nally fed into input of the classi�ers (Neural Network, Bayesian
Network, Multiclass SVM and Nearest Neighbour Classi�ers). These classi�ers decide
and choose the appropriate keywords for annotation tasks of the object.

10.4.1 Nearest Neighbor Classi�er

The nearest neighbour classi�er is used to compare the feature vector of the input
image and the feature vectors stored in the database. It is obtained by �nding the dis-
tance between the prototype image and the database. The class is found by measuring
the distance between a feature vector of input image and feature vectors of images in
reference database. The Euclidean distance measurement is used in this paper, but
other distance measurements can also be used [1].

LetX1, X2, ..., Xk be the k class features vectors in the database andXq the feature
vector of the query image. The feature vector with the minimum distance is found to
be the closest matching vector. It is given by:

d (Xq, Xj) = min
j∈{1,2,...,k}


√∑

i

(xq (i)− xj (i))
2

 (10.39)

The nearest neighbour classi�er does not need any training phase. But, if the
database is very large, it takes a considerable time to calculate all the distances between
the query image and database classes.

10.4.2 Neural Networks

Neural networks (or arti�cial neural networks) learn by experience, generalize from
previous experiences to new ones, and can make decisions [2, 27]. A multilayer network
consists of an input layer including a set of input nodes, one or more hidden layers of
nodes, and an output layer of nodes. Figure 10.5 shows an example of a three layer
network used in this paper, having an input layer formed byM nodes, one hidden layer
formed by L nodes, and an output layer formed by N nodes. This neural network is
trained to classify inputs according to target classes. The training input data are
loaded from the reference database while the target data should consist of vectors
of all zero values except for a one element, where its index is the class they are to
represent. The transfer function used in this tree layer neural network is hyperbolic
tangent sigmoid transfer function de�ned by:

f (x) = 2/
(
1 + e−2x

)
− 1 (10.40)
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Figure 10.5: The three layer neural network.

According to authors in [15], the number of neurons in the hidden layer is approxi-
mately equal to:

L = E
(

1 +
√
M (N + 2)

)
(10.41)

where

• E (x) denotes the integer part of x

• M and N are respectively the number of neurons in the input and output layers

10.4.3 Support Vector Machines (SVM)

Support vector machines (SVMs) were originally designed for binary classi�cation.
SVM is a classi�cation method which is based on �nding a hyper-plan that separates
data sets into two classes. Several methods have been proposed to construct a multi-
class SVM classi�er by combining one-against-one or one-against-all binary classi�ers
as shown in Fig.(10.6). The data sets can be linearly separable or nonlinearly separable.
The nonlinearly separable cases require the use of kernel function in order to obtain
linearly separable data sets [8, 25]. The one-against-one and the one-against-all binary
classi�er can be used. These classi�ers are based on the Gaussian kernel function
de�ned by:

K (x, y) = exp

(
−‖x− y‖

2

2σ2

)
(10.42)

where σ = 1. Many other kernel functions can be used for each binary classi�er.

10.4.3.1 One-against-all binary classi�er

The one-against-all binary classi�er containsN binary classi�er, whereN is the number
of class in data sets. The ith binary SVM is trained with all of the data examples in
the ith class with positive labels, and all other data examples with negative labels. To
construct a one-against-all multiclass SVM model from binary classi�er, the classes are
divided into two groups: the �rst group is formed by one class, and the second group
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(a) (b)

Figure 10.6: Structure of the multiclass SVM classi�er, a) one-against-all , b) one
against-one.

is all the other classes. The obtained SVM binary classi�er is trained to decide if the
class is from the �rst group or it belongs to the second group of classes. This process
is repeated for the second group that contains more than two classes until having
only one class for each group. The process must stop there. So, by following this
way, multiclass SVM is transformed to a multiple SVM binary classi�er. Each SVM
binary classi�er is trained using a matrix of training data, where each row corresponds
to features extracted as an observation from a class. After the training phase, the
multiclass SVM model is able to decide the correct class for an input features vector.
To classify an object, its input features vector is presented iteratively to the ith against
all binary classi�er from the �rst to the N th classi�er while the result is negative. When
the ith binary classi�er gives a positive result, the process stops. This means that the
object belongs to the ith class.

10.4.3.2 One-against-one binary classi�er

Another major method is called the one-against-one binary classi�er. From N class
in data sets, this method constructs N (N − 1) /2 binary classi�ers where each one is
trained on data from two classes. To design and extend SVM binary classi�er into a
one-against-one multiclass SVM, two groups of data examples are constructed from
two classes. The obtained SVM binary classi�er is trained to decide if the class is from
the �rst class or it belongs to the second class. This process is repeated for another
couple of classes until �nishing all the possible couples of the classes from data sets.
So, by following this way, multiclass SVM is transformed to a multiple N (N − 1) /2
SVM binary classi�er. Each SVM binary classi�er is trained using a matrix of training
data, where each row corresponds to the features extracted as an observation from a
class. When classifying an object with an input features vector, each binary classi�er
from the multiclass SVM one-against-one model decides and votes for only one class.
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Figure 10.7: Naive Bayes classi�er structure.

The class with the majority votes is the correct class which the object belongs to.

10.4.4 Bayesian Network

The construction of a Bayesian network consists of �nding a structure or a graph and
estimating its parameters by machine learning. In the case of the classi�cation, the
Bayesian network can have a class node Ci and many attribute nodes Xj . The naive
Bayes classi�er is used in this paper due to its robustness and simplicity. Figure 10.7
illustrates its graphical structure.

To estimate the Bayesian network parameters and probabilities, Gaussian distribu-
tions are generally used. The conditional distribution of a node relative to its parent is
a Gaussian distribution whose mean is a linear combination of the parent's value and
whose variance is independent of the parent's value [13] :

P (Xi|Pa (Xi)) =
1√

2πσ2
i

exp

 −1

2σ2
i

xi −
µi +

ni∑
j=1

σij
σ2
j

(xj − µj)

2


(10.43)
where

• Pa (Xi)are the parents of Xi

• µi, µj , σi and σj are the means and variances of the attributes Xi and Xj

respectively without considering their parents

• ni is the number of parents

• σij is the regression matrix of weights.

After the learning of the parameters and structure of a Bayesian network, the Bayesian
inference is used to calculate the probability of any variable in a probabilistic model
from the observation of one or more other variables. So, the chosen class Ci is the
one that maximizes these probabilities [16, 18]:
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P (Ci|X) =

{
P (Ci)

∏n
j=1 P (Xj |Pa (Xj) , Ci) if Xj has parents

P (Ci)
∏n
j=1 P (Xj |Ci) else

(10.44)

For the naive Bayes classi�er, the absence of parents and the variables independence
assumption are used to write the posterior probability of each class as given in the
following equation [17]:

P (Ci|X) = P (Ci)

n∏
j=1

P (Xj |Ci) (10.45)

Therefore, the decision rule d of an attribute X is given by:

d (X) = argmax
Ci

P (Ci|X)

= argmax
Ci

P (X|Ci)P (Ci)

= argmax
Ci

P (Ci)

n∏
j=1

P (Xj |Ci)

(10.46)

The class with maximum probability leads to the suitable character for the input
image.

10.5 Experiments and Results

In our experiments, for each region that represent an object from one channel of
the query image, the number of input features extracted using Hu invariants features
extraction method is 7 (hu1, hu2, hu3, hu4, hu5, hu6, hu7) while the number of
input features extracted using the order 4 of Zernike moments is 9 (Z00, Z11, Z20,
Z22, Z31, Z33, Z40, Z42, Z44) and the number of input features extracted using the
order 3 of Legendre moments is 10 (L00, L01, L02, L03, L10, L11, L12, L20, L21,
L30). So, in the case of color image, the resulted features vector is composed from
21 elements for Hu moments, 27 elements for Zernike moments and 30 elements for
Legendre moments. These inputs are presented and fed to the classi�er; which is the
multiclass SVM, the neural network or the nearest neighbour classi�er for testing to
do matching with the feature values in the reference database.
Figure 10.8 shows some examples of image objects from ETH-80 [9] image database

and COIL-100 [6] image database used in our experiments. The experiments were
performed based on di�erent classes of objects.
The accuracy of image annotation is evaluated by the precision rate which is the

number of correct results divided by the number of all returned results. All the ex-
periments are conducted using two databases: ETH-80 database containing a set of 8
di�erent object images [9] and COIL-100 database which contains color images of 100
objects with 72 di�erent angle views [6]. The proposed image annotation system has
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(a) (b)

Figure 10.8: Some examples of objects from: a) ETH-80 image database, b) COIL-100
image database.

Table 10.1: Single classi�er and descriptor mean annotation rates and total execution
time for image from ETH-80 and COIL-100 databases.

Database Descriptor
Classi�er

K-NN SVM-One SVM-All
Neural

Network

Bayesian

Network

Annotation

Rates

E
T
H
-8
0 Hu 59.80% 53.75% 58.13% 61.53% 70.00%

Zernike 68.41% 62.50% 65.00% 69.70% 76.32%

Legendre 78.55% 73.75% 75.00% 79.91% 82.50%

C
O
IL
-1
0
0

Hu 50.00% 43.75% 43.75% 61.25% 65.00%

Zernike 71.25% 60.00% 65.00% 73.75% 75.50%

Legendre 73.50% 70.00% 75.00% 77.50% 80.00%

Execution

Time in

seconds

E
T
H
-8
0 Hu 121.96 259.08 82.89 146.72 205.28

Zernike 3213.23 3820.65 3405.48 3338.17 3482.07

Legendre 10110.55 10490.77 12743.99 13245.28 11408.25

C
O
IL
-1
0
0

Hu 84.91 158.42 74.35 144.3 108.13

Zernike 3088.51 3216.42 2641.45 2674.8 3101.21

Legendre 11976.21 12127.88 12225.79 12866.25 9802.82

been implemented and tested on a core 2 Duo personnel computer using MATLAB
software. The annotation results for each classi�er and each type of moments for
image from ETH-80 and COIL-100 databases are presented in Table 10.1.
We observe from the above results that the Legendre moments with Bayesian net-

works classi�er give good results.
Figure 10.9 presents the annotation rates for each classi�er and each type of mo-

ments for image from ETH-80 and COIL-100 databases, while Fig.(10.10) presents the
approximate execution times for each classi�er and each type of moments for image
from ETH-80 and COIL-100 databases
The confusion matrix given in Fig.(10.11) shows improperly annotated objects (in-

dicated by the red color) in the case of using Legendre moments as descriptors and
Bayesian networks as classi�er for images from ETH-80 database.
Figure 10.12 shows the confusion matrix in the case of using Legendre moments

as a descriptor and the Bayesian network as classi�er for images from the COIL-100
image database.
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Figure 10.9: Mean annotation rates for each classi�er and each type of moments for
image from ETH-80 and COIL-100 databases.

Figure 10.10: Total execution times for each classi�er and each type of moments for
image from ETH-80 and COIL-100 databases.
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Figure 10.11: Confusion matrix using Legendre moments and Naïve Bayes network for
image from ETH-80 database.

Figure 10.12: Confusion matrix using Legendre moments and Naïve Bayes network for
image from COIL-100 database.
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(a) (b)

Figure 10.13: Example of image annotation results using a set of 8 images for training
the classi�ers from : a) ETH-80 database and b) COIL-100 database.

For each classi�er and for both images databases ETH-80 and COIL-100 containing
objects in general well-de�ned by shapes, Legendre descriptors allow to get the best
image annotation rate.

Figure 10.13 presents an example of annotation results obtained by using the pre-
sented system while the Graphical User Interface is illustrated in Fig.(10.14).

The image annotation results are also a�ected by the accuracy of the image seg-
mentation method; in most cases, it is very di�cult to have an automatic ideal seg-
mentation. This problem decreases the annotation rates. Therefore, any annotation
attempt must consider image segmentation as an important step, not only for au-
tomatic image annotation system, but also for the other systems which require its
use. The Legendre moments and Zernike moments are very expensive regarding the
processing and computation time, so any use of them in real time for an online image
annotation system will be di�cult and impracticable.

10.6 Conclusion

In this chapter, we have discussed image annotation via moment's method and com-
pared them to each other. The experimental results showed that the annotation system
based on Legendre moments with Bayesian networks gives good results for images that
are well and properly segmented. However, Image segmentation remains a challenge
that needs more attention in order to increase precision and accuracy of the image
annotation system.
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Figure 10.14: Graphical User Interface (GUI).
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