CHAPTER 1

A Survey on Keystroke Dynamics Biometrics: Approaches,
Advances, and Evaluations

Yu Zhong and Yunbin Deng

In this review paper we present a comprehensive survey of research efforts in the
past couple of decades on keystroke dynamics biometrics. We review the literature
in light of various feature extraction, feature matching and classification methods for
keystroke dynamics. We also discuss recent trends in keystroke dynamics research,
including its use in mobile environments, as a soft biometrics, and its fusion with
other biometric modalities. We further address the evaluation of keystroke biometric
systems, including traditional and new performance metrics, and list publicly available
keystroke datasets for performance benchmarks to promote synergy in the research
community.

1.1 Introduction

With the ever increasing demand for more secure access control in many of today's
security applications, traditional methods such as PINs, tokens, or passwords fail to
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keep up with the challenges presented because they can be lost or stolen. On the
other hand, biometrics |51} 62| 54, [74), [87, [104) [106), [109] based on “who” the person
is or “how"” the person behaves present a significant security advancement to meet
these new challenges. Among them, keystroke dynamics [3| 11}, 38, [78] 83| [84] [85),
90, [99, [105] provide a natural choice for secure “password-free” computer access.
Keystroke dynamics refer to the habitual patterns or rhythms an individual exhibits
while typing on a keyboard input device. These rhythms and patterns of tapping are
idiosyncratic [29] [30], in the same way as a person’s handwriting or signature, due to
their similar governing neurophysiological mechanisms. In fact, as early as the 19th
century, telegraph operators could recognize each other through their specific tapping
styles [66]. This suggests that keystroke dynamics contain sufficient information to
serve as a biometric identifier.

Compared to other biometric modalities, keystroke biometrics has more desirable
properties due to being user-friendly and non-intrusive. Keystroke dynamics data can
be collected without a user's cooperation or even awareness. Continuous authenti-
cation of a person is possible with keystroke dynamics just as a mere consequence
of that person using a computer. Unlike many other biometrics, keystroke data can
be collected using only software with no additional hardware. In summary, keystroke
dynamics biometrics enables a cost effective, user friendly, and continuous user au-
thentication mechanism.

Although keystroke dynamics is governed by a person’s highly individualistic neuro-
physiological pathway, it can also be influenced by his or her psychological state. As
a “behavioral” biometrics [110], keystroke dynamics exhibits instabilities due to tran-
sient factors such as emotion, stress, drowsiness, and etc. [12, 3I]. It also depends on
external factors, such as the input keyboard used, which can be further compounded
possibly due to different key layouts. The keying times can be noisy with outliers.
As keystroke biometrics exploits the habitual rhythms in a person’s typing, keystrokes
of frequently typed words or strings show more consistency and are better discerners
[81, 183].

The use of keystroke dynamics for verification and identification purposes was first
investigated back in the 1970's [34] 96]. Earlier research work [35] [105] on keystroke
biometrics has mainly concerned the use of static text [6], [76] [88], when the keystroke
dynamics of a specific pre-enrolled text, such as a password, is analyzed at a certain
time such as at log-on. There has been a shift of focus toward the more challenging free
text keystroke authentication [43], where a user is authenticated using unconstrained
text |10} [77, 78] [79] [80), [81], [92], [112]. While static text keystroke dynamics biometrics
are often used during the logon process to provide a onetime authentication, free text
keystroke biometric systems enable continuously authentication of a user during the
entire session for increased security [28]. A practical keystroke biometric system can
use static text, free text, or a combination of both.

As keystroke dynamics biometrics has drawn intense research interest the past couple
of decades, a number of survey papers have been published |2, [7, [11], [26] [60, (91, [98].
In our paper, we not only survey existing approaches but also look at possibilities and
collect information necessary for future advances in keystroke dynamics biometrics.
We start by looking at current keystroke feature extraction and classification methods
(Section [1.2). We then review recent advances and new trends (Section [L.3). In
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particular we focus on new development in keystroke biometrics for mobile devices, a
rapidly growing and changing area of study. Finally, we see an urgent need for the
research community to make a concerted effort in establishing large and representa-
tive keystroke biometrics benchmark datasets in order to assess the advances in new
algorithms. To this end, we compile a list of publicly available keystroke dynamics
datasets to promote the sharing of standard experimental and performance evaluation
protocols that will lead to more effective and objective progress assessment (Section
[1.4). We conclude the paper with a summary and discussion of future directions.

1.2 Keystroke Dynamics Algorithms

In this section we review the features that are used to characterize individual keystroke
dynamics and the classification methods applied to interpret the extracted features.

1.2.1 Keystroke Dynamics Features

Keystroke dynamics features are usually extracted using the timing information of
the key down/hold/up events. The hold time or dwell time of individual keys, and
the latency between two keys, i.e., the time interval between the release of a key
and the pressing of the next key are typically exploited. Digraphs, which are the
time latencies between two successive keystrokes, are commonly used. Trigraphs,
which are the time latencies between every three consecutive keys, and similarly, n-
graphs, have been investigated as well. In their study on keystroke analysis using free
text, Sim and Janakiraman [94] investigated the effectiveness of digraphs and more
generally n-graphs for free text keystroke biometrics, and concluded that n-graphs are
discriminative only when they are word-specific. As such, the digraph and n-graph
features do depend on the word context they are computed in.

Gaines et al. [35] did a preliminary study on keystroke dynamics based authentication
using the T-test on digraph features. Monrose and Rubin [81] later extracted keystroke
features using the mean and variance of digraphs and trigraphs. Using the Euclidean
distance metric with Bayesian-like classifiers, they reported a correct identification rate
of 92% for their dataset containing 63 users.

Bergadano et al. [10] and later Gunetti and Picardi [43] proposed to use the rela-
tive order of duration times for different n-graphs to extract keystroke features that
was found to be more robust to the intra-class variations than absolute timing. They
demonstrated that the new relative feature, when combined with features using abso-
lute timing, improved the authentication performance using free text.

Syed et al. [97] extracted features using variations in keying event, motivated
by the observation that the same text string may be inputted using different key
entry sequences. They found out that such variations in typing sequences contain
distinguishing information for user authentication, while being independent of typing
proficiency. In an interesting study, Roth et al. explored the use of keystroke acoustics
for user identification [89]. They built a virtual vocabulary based on keystroke sound,
and then extracted digraph latency features using the learned virtual keyboard. They
were able to obtain an EER of 11% on a dataset of 50 subjects, indicating the promise
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of keystroke acoustics for user authentication. Furthermore, the new approach does
not require direct access of the computer as traditional methods do.

1.2.2 Keystroke Dynamics Classification

Over the years, keystroke biometrics research has utilized many existing machine learn-
ing and classification techniques. Different distance metrics, such as the Euclidean
distance, the Mahalanobis distance, and the Manhattan distance, have been explored.
Both classical and advanced classifiers have been used. These methods are discussed
in more details in the following subsections.

1.2.2.1 Distance based classification

Once feature vectors are extracted to represent the typing characteristics, they are
then classified for authentication and identification purposes. Early research mainly
used the Nearest Neighbor classifier [16] with various distance functions that measure
the similarities between keystroke features. Euclidean distance has been the default
distance metric for its simplicity and geometric intuitiveness [1I} [78]. Other distance
functions have also been explored, and are reviewed as follows.

A. Mahalanobis Distance Despite its simplicity and intuitiveness, Euclidean dis-
tance has two major limitations:

1. It is highly sensitive to scale variations in the feature variables, and
2. It has no means to deal with the correlation between feature variables.

Mahalanobis distance, on the other hand, takes into account the covariance of data
variables to correct for the heterogeneity and non-isotropy observed in most real data.
Because it handles the correlated data well, it has been popularly used to match
keystroke features [13| [16]. The squared Mahalanobis distance between two feature
vectors x and y is defined as:

o —yl|* = (@ —y)" S (z—y) (1.1)

where S is the covariance matrix of the data. The Mahalanobis distance not only
weights the distance calculation according to the statistical variation of each feature
component, but also decouples the interactions between features based on their co-
variance matrix, providing a useful distance metric for feature comparisons in pattern
analysis. In statistical literature, the Mahalanobis distance is related to the logarith-
mic likelihood under the assumption that the data follows a multivariate Gaussian
distribution, which is a reasonable approximation for most practical data.

B. Manhattan Distance The Manhattan distance metric, also called L1 distance
or city block distance, is defined as follows:
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Figure 1.1: The probability density functions for univariate Laplace distribution and
Gaussian distribution with mean 0 and variance 1. The Laplace distribu-
tion has fatter tails than the Gaussian distribution, and is therefore more
tolerant to outliers..

lz —ylly =D lzi — il (1.2)

The Manhattan distance has the advantages of simple computation and easy de-
composition into contributions made by each variable. Most importantly, it is more
robust to the influence of outliers when compared to higher order distance metrics
including Euclidean distance and Mahalanobis distance. The Manhattan distance also
has a statistical interpretation as the Mahalanobis distance does. It is related to the
log likelihood of the multivariate Laplace distribution with an identity covariance ma-
trix. The Laplace distribution is similar to the Gaussian distribution in that both are
symmetric with one mode. However, the Laplace distribution has fatter tails than the
Gaussian distribution (see Fig.), and therefore it is more tolerant to outliers that
significantly deviate from the mean. The Laplace distribution provides an attractive
alternative to Gaussian distribution assumption for many real world data because of
their heavy tails. Due to its robustness to outliers, the Manhattan distance has been
used in keystroke biometrics research as well [Tl 57].

A performance study of fourteen existing keystroke dynamics algorithms conducted
by Killourhy and Maxion [62] indicates that the top performers are classifiers using
scaled Manhattan distance [3], with an equal error rate (EER) of 0.096, and the nearest
neighbor classifier using the Mahalanobis distance [16], with an EER of 0.10 on their
keystroke dynamics benchmark dataset.
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C. Decorrelated and Normalized Manhattan Distance The keystroke dynam-
ics features consist of both dwell and latency timings, which exhibit large variations
in individual components. The feature variables tend to interact with each other as
well. These scale variations and feature correlations are handled well using the Maha-
lanobis distance metric. However, Mahalanobis distance is susceptible to the outliers
in keystroke dynamics data caused by frequent pauses during typing. On the other
hand, Manhattan distance is more robust to outliers, but it is not able to correct for the
adverse interactions and redundancies between keystroke features. In summary, each
of the two metrics, when used alone, has its respective advantages and limitations.

Zhong et al. have proposed a distance metric combining the benefits of both Ma-
halanobis distance and Manhattan distance [115]. First, the principle of Mahalanobis
distance is applied to decorrelate and normalize the keystroke dynamics feature vari-
ables so that the covariance matrix of the transformed feature vectors becomes an
identity matrix. This rectifying process is accomplished by applying the following
linear transform to the keystroke dynamics input data:

' = oz (1.3)

where ® = S~1/2 is the inverse of the principle square root of the covariance matrix
S such that ®7'® = S—1. With this transform, the data features become uncorrelated
with identity variations in the feature variables. Once the data is normalized and
decoupled, the Manhattan distance between two transformed data points 2’ and ¥/ is
then computed in a more standardized new feature space:

le =yl = lla’ = y/ll, = |$™2 @=v)| - (1.4)

This distance metric not only ensures that the undesirable correlation and scale
variations are accounted for, but also suppresses the influence of outliers for improved
performance. As a result, the distance metric by Zhong et al. combines the benefits of
both Mahalanobis and Manhattan distance metrics while overcoming their individual
limitations. This distance metric was shown to outperform the other distance metrics
on the CMU keystroke dataset [115].

1.2.2.2 Keystroke Dynamics Classification Using Statistical and Advanced
Machine Learning Methods

Over the years, keystroke biometrics research has utilized many existing classification
techniques. Both classical statistical methods [39] [46] and advanced machine learning
approaches have been used, including K-Nearest Neighbor (KNN) classifiers [21], [112],
K-means methods [59], Bayesian classifiers [81], Fuzzy logic [44], Boost learning [g],
and Random Forests [8] [76], etc. Support vector machine (SVM) is a powerful ma-
chine learning method which computes decision boundaries by maximizing the margin
in order to reduce the generalization error. With the kernel trick .S is able to accommo-
date nonlinear decision boundaries for complex classification tasks. SVMs have been
used to select effective features [I11], and to classify feature patterns [75] in keystroke
dynamics analysis.
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Hidden Markov Model is a probabilistic model of a sequence of hidden variables with
causal or conditional dependency. It is an appealing model for keystroke dynamics as
it naturally represents the interconnections between consecutive features and noise in
the data. Chen and Chang [20] and Jiang et al. [56] have respectively used Hidden
Markov Models to learn the non-deterministic temporal dynamics in typing rhythms.
A Gaussian mixture model approach has been used in [46] as well.

Neural networks provide a general learning paradigm for a variety of applications.
They have been popularly used in keystroke dynamics in the past [16] 21], [44] [67,
68, 169, [72] [71]. However, traditional neural networks have their pitfalls that they
may be trapped in local minimums during training to compromise the classification
performance. Recent advances in deep learning have mitigated this risk in neural
networks to allow well trained deep neural networks. Such deep learning approaches
have achieved state of the art recognition performance for voice biometrics and many
other object recognition applications. Deng and Zhong [27] applied the deep learning
method to keystroke dynamics user authentication. Their study shows deep learning
method significantly outperforms other algorithms on the CMU keystroke dynamics
dataset [62].

1.3 Recent Trends

Keystroke dynamics biometrics is a rapidly growing field, driven by the high demand in
secure access control for many applications, and adapting to fast evolving technology.
In the following section, we review recent trends in keystroke dynamics biometrics
research.

1.3.1 Keystroke Dynamics for Mobile Devices

These days, mobile devices are ubiquitous within our society. As they become an
increasingly indispensable and important part of our everyday life, it is essential to
ensure secure access of these devices as they store not only personal but oftentimes
sensitive and even critical information [24] [86), [03]. Driven by this increasing demand,
research work on keystroke dynamics biometrics on mobile devices has mushroomed
in recent years [22] [42].

Compared to conventional keystroke dynamics on desktops or laptops, keystroke
dynamics on mobile devices present many new challenges [14]. The keypads are much
smaller on mobile devices due to their compact sizes. Many early mobile phones have
used hardware keyboards with a reduced set of keys where each key is multiplexed
for multiple characters. These hardware keyboards have since then been gradually
replaced by virtual keyboards. These virtual keyboards have different layouts and re-
sponses to pressing from traditional keyboards. Keystroke dynamics on mobile devices
is further complicated by new product features that were introduced to improve user
experience, such as predictive text. All of the aforementioned factors can significantly
affect a user's typing behavior compared to traditional desktop applications. For ex-
ample, a user may change from a two-hand typing to single-hand or even single-finger
typing. The limited computational resources within mobile devices impose additional
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constraints on keystroke dynamics algorithms in those devices.

On the other hand, mobile devices are often embedded with a rich suite of advanced
sensors. These sensors can capture additional data measurements during typing. A
number of experiments have demonstrated that this additional data opens up abun-
dant opportunities for boosting keystroke dynamics authentication accuracy in mobile
devices.

Clarke and Furnell performed a feasibility study on keystroke-based user authenti-
cation on mobile phones. Key hold time and error rate (number of times pressing the
backspace key) were used as features in their study. They achieved 12.8% EER using
neural network classifiers on mobile handsets with a 12-key hardware keyboard [25} 23].
Maiorana et al. [73] also investigated the feasibility of using keystroke dynamics for
user verification on mobile phones. They proposed a new statistical classifier which is
computationally efficient for use in a mobile environment. They assessed the discrimi-
native power of different subsets of keystroke timing features, and obtained an EER of
13.59%. Their study indicates that keystroke dynamics biometrics provides effective
authentication in mobile devices, but needs supplementary features in order to facilitate
a highly secure authentication scheme. Simple statistical methods were also employed
by Campisi et al. [I8] for keystroke dynamics biometrics on mobile phones. Buchoux
and Clarke [17] studied various classifiers for keystroke analysis on smart phones, and
their results suggest that statistical classifiers are the most effective given the trade-off
between computational requirements and authentication accuracy. Zahid et al. inves-
tigated keystroke dynamics for mobile phones with numeric keyboards where each key
is multiplexed for several characters [II3]. They proposed four digraphs customized
for these keyboards: a horizontal /vertical digraph which is the time to switch between
keys horizontally/vertically, and a non-adjacent horizontal/vertical digraph which is
the time to switch between non-adjacent keys horizontally/vertically. They demon-
strated that these features, combined with the conventional key hold time and error
correction rate, were capable of capturing user characteristics. Using particle swarm
optimization (PSO) and genetic algorithm (GA) classifiers with these features, they
obtained an average error rate of 2% FAR after the verification mode on a dataset
containing 25 subjects. Hwang et al. [47] also concluded that keystroke dynamics
can provide effective authentication for mobile devices. Furthermore, they proposed
the use of artificial rhythms to improve the uniqueness and consistency of a user's
keystroke signature, and therefore increase the authentication accuracy.

Trojahn and Ortmeier [I0I] compared keystroke dynamics performance using hard-
ware keyboards and software keyboards on mobile phones during the login process.
They found that despite small performance degradation, software keyboard input
still provides feasible features for keystroke dynamics biometric authentication. Kam-
bourakis et al. [58] proposed to enhance traditional keystroke dynamics features with
additional data on the speed and distance of finger movement on smartphones with
touchscreens. This upgrade resulted in an EER of 26% on a 10-digit PIN and an EER
of 13.6% on short passphrases.

As the experiments have shown, although keystroke dynamics serves as an effective
authentication scheme for mobile devices, it comes short of meeting strong security
requirements when used as the sole criterion. However, there are many additional
advanced sensors embedded in mobile devices which may be exploited for improved
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authentication performance. These sensors can either facilitate more comprehensive
keystroke characterization for augmented keystroke dynamics biometrics, or provide
other biometric modalities that can be used in conjunction with keystroke dynamics.

Among these sensors are touchpad pressure sensors which measure finger pressure
exerted on touchpad during typing events [6b]. The pressure data were used for
straightforward augmentation of keystroke dynamics biometrics for mobile devices
with touch screens [I]. Saevanee and Bhatarakosol [90] explored the use of both
finger pressures on touch pads and keystroke dynamics for user authentication. They
found that finger pressure features are more discriminative than the conventional key-
ing time features, and obtained an accuracy of 99% using finger pressure features with
the PNN analytical method. Jain et al. [53] 55| also found that superior performance
could be achieved by fusing touch screen features with conventional keystroke fea-
tures. Chang et al. [19] proposed a graphical password interface with enlarged virtual
keys for improved keystroke dynamics utility and authentication accuracy. They also
examined using finger pressure features to enhance the authentication scheme. They
demonstrated that by fusing pressure features with keystroke timing features, the EER
of the keystroke dynamics based authentication system is reduced from 12.2% to 6.9%
on a dataset containing 100 subjects and 20 imposters. Trojahn et al. [I00] investi-
gated combinations of keystroke time features for keystroke dynamics authentication
in mobile devices. They also explored additional touch features such as finger pressure
and the size of the key touch area for enhanced keystroke dynamics. They found
that the additional touch features reduced more than 30% of the error in the timing
feature-based keystroke authentication scheme using a dataset of 152 subjects.

Mobile devices are typically embedded with inertial sensors including accelerometers
and gyroscopes which record the motion of the device. These motion characteris-
tics have been exploited to improve the accuracy of keystroke dynamics biometrics
for mobile devices [70]. Ho [45] explored the use of accelerometer statistics, key tap
size, and key duration features to authenticate mobile device users during the login
stage. The study showed that accelerometer statistics performed the best among the
three feature types, while fusing the three feature types drastically improved the ac-
curacy. Giuffrida et al. [42] used motion measurements from inertial sensors including
accelerometers and gyroscopes to substantially boost keystroke dynamics authentica-
tion performance on mobile phones. In another study, [114] exploited four features
extracted from sensors in touchscreen smartphones to fully characterize the keystroke
dynamics: accelerations during key pressing, touching pressure, touching area, and key
hold and inter key time. Experiments conducted using keystroke analysis on 4-digit
and 8-digit PINs using a dataset containing more than 80 subjects yielded an EER
of 3.65%. Trojahn and Ortmeier [102] fused keystroke dynamics biometrics with gait
characteristics from gyroscopes for continuous authentication on mobile devices.

Keystroke dynamics biometrics for continuous mobile authentication has also been
investigated. Feng et al. [33] studied mobile authentication for both the login and
post login stages. They adopted text independent keystroke features comprising of
keystroke time and tactile pressure from the capacitive touchscreen, with and without
haptic feedback. Decision tree, random forest, and Bayes Net classification methods
were used. Performance analysis on a dataset of 40 subjects indicated that adopting
pressure information improved authentication accuracy, and typing with haptic feed-
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back benefited the performance as well. Gascon et al. [36] performed a study on
continuous authentication of mobile device users using typing motion behavior on a
virtual keyboard. In addition to the typical keystroke time features, they also utilized
data from the accelerometer, gyroscope, and orientation sensor to characterize the
motion signature of the typing behavior. These features were collected for a prede-
fined short text typed by 315 subjects. A 2376 dimensional feature vector encoded the
statistics, and shape of motion measurements in both spatial and frequency domains
were extracted to represent the typing motion behavior. SVM was then used to classify
these high dimensional feature vectors.

1.3.2 Keystroke Dynamics as a Soft Biometrics

Soft biometric traits are “characteristics that provide some information about an in-
dividual but lack the distinctiveness and permanence to sufficiently differentiate any
two individuals” [53], such as gender and race. Nonetheless, these traits could prove
useful in improving the performance of person identification systems. There has been
emerging research on keystroke dynamics as a soft biometrics for gender classification.

Fairhurst and Costa-Abreu [32] conducted experiments on keystroke dynamics for
gender identification in social network environments in order to assess trust and reliabil-
ity within online communications. Promising gender prediction results were achieved
by directly adapting keystroke dynamics identification algorithms for gender predic-
tion. They were able to obtain a 3% error rate for gender classification by fusing
multiple classifiers. Giot and Rosenberger [41] investigated gender extraction using
keystroke patterns and utilized the predicted gender to further enhance the accuracy
of the keystroke dynamics authentication scheme. Using a support vector machine
trained on keystroke time latency features with known gender labels, they were able
to achieve a gender classification accuracy of 91% on the GREYC91 dataset (Section
[37]) of 7,555 samples from a total of 133 subjects. With a boost by the
gender score computed from the keystroke latency features, they further improved
the keystroke dynamics authentication accuracy from an EER of 10.65% to 8.45%,
achieving a 20% error reduction. Most recently, keystroke dynamics has been studied
to extract not only gender information, but also other soft biometric traits including
age category, single or two-handed usage, and left or right-handedness [49] [48, 50].
Encouraging results using support vector machines have shown promise in keystroke
biometrics as a soft biometrics when evaluated on the GREYC-NISLAB Keystroke Dy-
namics Soft Biometrics Dataset of 110 users with 100 sample passphrases per user

(Section [1.4.2.11)).

1.3.3 Keystroke Dynamics for Emotion Recognition

As a behavioral biometrics, keystroke dynamics is influenced by the emotion or men-
tal state of the user. This has motivated research on stress detection and affective
computing using keystroke dynamics analysis [5], [61], [63] 64, 82, 116]. Epp et al.
also conducted analysis on emotional states using keystroke dynamics features such
as digraphs [3I]. The study performed by Tsihrintzis et al. [I03] suggested that
keystroke information can significantly boost emotion recognition using visual-facial
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features. Bixler and D'Mello [12] explored combining keystroke timing statistics with
task appraisals and stable traits to detect a user's affective state or emotion in order to
enhance the human/computer interaction experience. By analyzing keystroke timing
information and other linguistic features using advanced machine learning methods
including decision trees, support vector machines, boost learning and neural networks,
it is possible to achieve accurate recognition of both cognitive and physical stress
conditions comparable to algorithms using other effective computing methods [107].

1.4 Evaluation of Keystroke Dynamics Biometric
Systems

With the growing interest in keystroke dynamics research, it is fundamental to es-
tablish standardized test beds and performance metrics in order to compare various
new algorithms and assess progress in the field. In this section, we review existing
performance metrics and list publicly available keystroke dynamics datasets that can
be used for continued performance evaluations and comparisons.

1.4.1 Performance Metrics

Two common metrics used to assess the performance of a keystroke biometric system
are:

1. False acceptance rate (FAR), sometimes known as false match rate (FMR), is
the probability that a system incorrectly classifies an imposter as a genuine user.
It measures the percent of imposters that are incorrectly accepted as genuine
users, i.e., how often an intruder is granted access.

2. False rejection rate (FRR), also known as false none match rate (FNMR), is
the probability a system incorrectly classifies a genuine user as an imposter. It
measures the percent of genuine users that are rejected as imposters.

For a secure system, both error rates need to be small.

Since different values in the operating threshold may result in varying values of
FRR and FAR, the receiver operating characteristic (ROC) curve, i.e. the graphical
plot of FAR against FRR for the whole range of threshold settings, is often used to
illustrate the comprehensive performance of an algorithm. ROC curves from different
algorithms are also plotted against each other for performance comparison. The ROC
curve is sometimes known as a decision error trade-off (DET) curve. A special point
on the ROC curve, where the FAR equals FRR, known as equal error rate (EER) or
crossover error rate (CER), is typically used as a performance metric. In general, the
system with the lowest EER is the most accurate. For certain applications which have
zero tolerance for false rejection, the zero-miss false alarm rate (ZMFAR), which is
the minimum false alarm rate when the miss rate is zero, is used. For other systems
which suffer large losses for admitting intruders, the zero false acceptance rate, i.e.,
the FRR when FAR equals zero, is used as well.
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Alternatively, accuracy and error rate have been used to measure authentication and
identification performance. The accuracy is the percentage of correct classifications
performed by the system.

In addition to these traditional performance metrics, new performance metrics have
been proposed to address the challenges in continuous authentication, which demand
accurate and timely detection of imposters along with minimum annoyances from false
rejections of the genuine user. In an example of continuous authentication, Bours [15]
proposed a trust model to continuously monitor a user’s credibility, and only reject
a user when the trust drops below a certain threshold from consistent and prolonged
incorrect typing behavior. Two new performance metrics, called average number of
impostor actions (ANIA) and average number of genuine actions (ANGA), have been
used as performance indicators for continuous authentication. These metrics measure
how much an impostor can type before he or she gets rejected and how much a genuine
user can type before wrongfully locked out of the system.

1.4.2 Benchmark Keystroke Datasets for Performance Analysis
and Comparison

Despite promising performances by keystroke dynamics authentication algorithms re-
ported over the years, such results were often achieved on proprietary datasets that
remain unavailable to the research community. As a result, it has not been possible
to make a sound comparison of different algorithms because of the use of separate
datasets and evaluation criteria across studies. To address this issue, keystroke dynam-
ics databases, including benchmark results of popular keystroke biometrics algorithms,
have been published in recent years to provide a standard experimental platform for
assessing progress. These keystroke datasets, along with accompanying evaluation
methodologies and performance studies of existing algorithms, provide multiple bench-
marks to objectively gauge the progress of new keystroke biometrics algorithms.

1.4.2.1 CMU Static Keystroke Dynamics Benchmark Dataset [62]

The CMU keystroke dynamics benchmark dataset contains keystroke dynamics con-
sisting of the dwell time for each key and the latencies between two successive keys for
the static password string “.tiebRoanl”. There are 51 subjects in the dataset. For each
subject, there are eight data collection sessions with at least one day intervals between
sessions. A total of 50 feature vectors were extracted in each session, resulting in a
total of 400 feature vectors for each subject. The same publication includes the perfor-
mances of fourteen existing keystroke dynamics algorithms on this dataset, including
Neural Networks [21} [44], K-means [59], Fuzzy Logic [44], KNNs, Outlier Elimination
[44], SVMs [111], etc. Various distance metrics, including Euclidean distance, Man-
hattan distance [13], and Mahalanobis distance [13] were used. This dataset has also
been used to evaluate more recent algorithms [27, [115].

1.4.2.2 GREYCO09 Static Keystroke [13] Dynamics Benchmark Dataset [37]

The GREYC Keystroke Benchmark [37] contains static typing rhythms for the fixed
password “greyc laboratory” collected from 100 subjects over a duration of two months.
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Two keyboards were used for data collection. The dataset includes 60 samples from
each subject resulting in a total of 7555 captures with an average of 51 captures per
subject.

1.4.2.3 GREYC12 Static Keystroke Dynamics Benchmark Dataset [39]

The GREYC'12 Keystroke Benchmark mimics the realistic scenario of keystroke dy-
namics based authentication in user logins. The data was collected in a web-based
unconstrained environment. Unlike the dataset in Section[1.4.2.2)where all users typed
a fixed passphrase, each user typed the passphrase of his/her own choice in addition
to an imposed passphrase. The dataset contains 83 subjects with a total of 5,185 gen-
uine samples, 5,754 imposter samples, and 5,439 imposed samples. Authentication
performances determined by applying statistical analysis to multiple latency features
were published along with the dataset as a baseline for performance comparison.

1.4.2.4 Queen Mary University Keystroke 100 benchmark dataset [72]

This dataset is a static dataset containing keystroke data from 100 users typing the
password “try4-mbs”. In addition to typing latency timing data, the set also includes
the time series of typing pressure exerted, measured in volts. A total of 10 typing
samples were collected from each subject. A number of keystroke authentication
techniques including SVM and ARTMAP have been evaluated on this dataset [72] [71].

1.4.2.5 Si6 Labs Keystroke rhythm Dataset [9]

This dataset includes typing rhythm data from volunteer web users collected via a
web application. It contains keystroke dynamics of a set of 20 long sentences from a
total of 63 subjects typing during 66 sessions. The input language for this dataset is
Spanish.

1.4.2.6 Beihang University Static Keystroke Dynamics Benchmark Dataset
[68, [69]

The Beihang Keystroke Dynamics database boasts realistic keystroke dynamics col-
lection using a commercialized system. This database includes 2057 test and training
samples of user names and passwords from 117 subjects. This database contains
two subsets: one collected in a cybercafé environment and the other collected online.
The performances of three keystroke dynamics approaches, namely Nearest Neighbor
method, Gaussian model, and OC-SVM, have been reported on this database.

1.4.2.7 University of Torino Free Text Keystroke Dataset [43]

This dataset contains free text samples from forty volunteers acting as genuine users,
each with 15 typing samples, and from 165 volunteers acting as imposters, each with
one typing sample. Each sample contains the time when a key is pressed along with
the key's value. On average, the text samples contain between 700 and 900 characters.
All subjects were native ltalian speakers and all samples were written in Italian. The
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data was collected during a period of six months. This dataset is available by sending
a request to its authors.

1.4.2.8 Clarkson University Mixed Keystroke Dynamics Dataset [108]

The Clarkson University Keystroke Dynamics dataset contains keystroke data of short
pass-phrases, fixed text (transcriptions of long proses), and free text. Two data col-
lection sessions, each about one hour long, were conducted on two separate days with
39 subjects. Performance results using two existing algorithms [43] [66] were published
together with the dataset. In addition to keystroke data, videos of facial expressions
and hand movements of the users were also captured and included in the dataset.

1.4.2.9 TapDynamics Keystroke Dataset from Mobile Phones [45]

This dataset is collected using an android login application on mobile phones. It
collects the following data during the login session when a user enters the PIN: the
duration of each key tap, the latency between each key tap, the size of each key
tap, and all accelerometer readings over the course of a login attempt. The dataset
is obtained from 55 subjects, each with about 30 samples, resulting in 1704 data
samples. The PIN code for each subject is randomly assigned from five prespecified
codes. This dataset is accessible from https://github.com /grantho/TapDynamics//.

1.4.2.10 Graphical Password Keystroke+Pressure Mobile Dataset [19]

This dataset contains the keystroke dynamics data and touch pressure data for graph-
ical passwords collected from 100 subjects using two touch screen mobile devices: a
Motorola Desire HD with a 4.3 inch screen and a Viewsonic Viewpad with a 10.1 inch
screen. The graphical password enlarges the virtual key size for improved keystroke
dynamics utility. Each subject chose his or her password of choice during enrollment
where five samples were collected for each subject to build the classifier. An additional
five samples were collected over a following period of five weeks for testing. 10 people
chosen as imposters were given the passwords for the 100 legitimate users and five
samples were collected per password for each imposter, resulting in a total of 5,000
imposter samples. Performance results using the keystroke timing features, as well as
using both finger pressure and keystroke timing features, were published along with the
dataset. This dataset is accessible from http://ty.ncue.edu.tw/N27/data.html.

1.4.2.11 GREYC-NISLAB Keystroke Dynamics Soft Biometrics Dataset [48]

This dataset contains both keystroke dynamics data and additional categorical in-
formation on gender, age, left or right-handedness, and typing method (one-handed
typing vs. two-handed typing). Keystroke timing information on five passphrases was
collected from a total of 110 subjects. There were 10 repetitions per phrase per subject
for each way of typing. Some performance analysis on the dataset was published in [49]
48]. This dataset can be accessed from the following link: http://www.epaymentbio
metrics.ensicaen.fr/images/pdf/greyc-nislab%20keystroke’,20benchmark?y2
Odataset.xls!l
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1.5 Conclusions

Keystroke dynamics facilitates a natural and cost effective way for security and access
protection of computers and mobile devices. It also allows for continuous authenti-
cation by monitoring a user's typing behavior during the entire login session without
any interruption to the user's routine work. The use of keyboards for personal iden-
tification had been studied even before personal computers were introduced [96]. It
has been attracting increasing attention and interests as our increasing dependency
on computers and mobile devices to store private and sensitive information demands
strong security protection. Despite decades of research, keystroke dynamics research
is still evolving with many open challenges.

In this survey we review the literature of keystroke dynamic biometrics. We discuss
recent advances and new trends in keystroke dynamics research. Echoing the senti-
ment on a lack of common evaluation framework [8, [60] in the field, we compile a
list of publicly available keystroke datasets. We would like to note that despite the
available datasets, we are still in need of large standard keystroke databases for the
research community. The desirable databases should reflect data variations in realistic
applications, including number and diversity of subjects, size of vocabulary, span of
sessions across a prolonged period of time, etc.

Keystroke dynamics has unmatched usability and tremendous potential for cyber
security applications. This research field faces the challenge common to all other bio-
metric modalities such as fingerprints [74] and face recognition, that is, how to perform
robustly in real world scenarios with the presence of various variations |54} [05]. New
feature extraction and classification methods are still in demand. Fusion of keystroke
biometrics with other biometric modalities will provide the ultimate comprehensive and
secure authentication solution [4} 40].
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