
CHAPTER 2

Keystroke Dynamics User Authentication Using Advanced
Machine Learning Methods

Yunbin Deng and Yu Zhong

User authentication based on typing patterns offers many advantages in the do-
main of cyber security, including data acquisition without extra hardware requirement,
continuous monitoring as the keys are typed, and non-intrusive operation with no inter-
ruptions to a user’s daily work. In this chapter, we adopt three popular voice biometrics
algorithms to perform keystroke dynamics based user authentication, namely, 1) Gaus-
sian Mixture Model with Universal Background Model (GMM-UBM), 2) identity vector
(i-vector) approach to user modelling, and 3) deep machine learning approach. Unlike
most existing keystroke biometrics approaches, which only use genuine users’ data at
training time, the proposed methods leverage data from a large pool of background
users to enhance the model’s discriminative capability. These algorithms make no as-
sumption about the underlying probability distribution of the data and are amenable
to real-time implementation. Although these techniques were originally developed for
speech analysis, our experiments on the publicly available CMU keystroke dynamics
dataset using these algorithms have shown significant reduction in the equal error

Yunbin Deng and Yu Zhong
BAE Systems
6 New England Executive Park, Burlington MA 01803, USA
e-mail: {Yunbin.deng, Yu.Zhong}@baesystems.com

Editors: Y. Zhong and Y. Deng, Recent Advances in User Authentication Using
Keystroke Dynamics Biometrics
DOI: 10.15579/gcsr.vol2.ch2, GCSR Vol. 2, pp. 23-40, 2015
c©Science Gate Publishing - Available under CC BY-NC 4.0 International License

23

http://creativecommons.org/licenses/by-nc/4.0/


24 Y. Deng and Y. Zhong

rate over other published approaches. Finally, we discuss challenges and concerns for
practical deployment of keystroke authentication technology.

2.1 Introduction
With the ever increasing demand for secure access control in many of today’s security
applications, traditional password methods fail to keep up with the challenges. As
there are too many passwords to remember, users end up with simple passwords
and/or shared passwords among many applications. To make things worse, studies
have shown that even carefully crafted user names and passwords can be hacked
easily. For example, during the Defcon 2010 context, hacker was able to hack 30,000
passwords out of 53,000 given passwords within 18 hours. Fortunately, biometrics
[26, 27, 28, 41, 53] based on “who” a person is or “how” a person acts, as compared
to what a person has (key) or knows (password) has made significant advancement to
meet these new challenges.
Traditional biometrics, such as fingerprint [35], iris, face, and voice recognition,

typically performs a one-time intrusive authentication with a user’s cooperation. To
achieve high security without any impact on a user’s work efficiency, biometrics modal-
ities capable of continuous authentication without a user’s awareness are highly desir-
able. Among them, keystroke dynamics [37] provides a natural choice for continuous
secure monitoring merely as a consequence of a user’s hand interacting with the device.
Keystroke dynamics refers to the habitual patterns or rhythms an individual exhibits
while typing on a keyboard input device, including smartphones and tablets where a
soft keyboard may be used. These rhythms and patterns of tapping are idiosyncratic,
the same way as handwritings or signatures are, due to their similar governing neuro-
physiological mechanisms [12]. Back in the 19th century, telegraph operators could
recognize each other based on one’s specific tapping style [33]. Recently, it is shown
that typing text can be deciphered simply based on the sound of key typing [60].
As such, it is believed that the keystroke dynamics contains enough information to
ascertain a user at the keyboard.
Keystroke dynamics can be characterized using timing (such as the key down time

for each key, latency between consecutive keys, and typing speed, etc.), finger pres-
sure (the strength of typing, the sound it makes, etc.), touching style (touching size,
resulting acceleration on the device, etc.), and typing habit (such as the use of special
characters, typing errors and corrections, etc.). In addition, keystroke dynamics can
be combined with traditional authorship biometrics to form a new “keyboard dynamic
authorship” biometric that captures the neurophysiological process of both typing and
writing. Unlike many other biometrics, the keystrokes information can be collected
using software only without additional hardware. In summary, keystroke dynamics
biometrics enables an emerging cost effective, user friendly, and continuous user au-
thentication modality.
Although keystroke dynamics is governed by a person’s neurophysiological path-

way to be highly individualistic, it can also be influenced by his or her physical and
psychological state. As a “behavioral” biometrics [55], keystroke dynamics exhibits
instabilities due to transient factors such as fatigue, emotions, stress, drowsiness, etc.
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[13]. It also depends on some external factors, such as the specific keyboard device
used, possibly due to different layout of the keys. For example, the soft key layout
on the smartphone is quite different form the PC keyboard layout. In addition, user
typing patterns can be highly context dependent. Extreme cases can be programming
v.s. online chatting. As such, keystroke data need to be collected at multiple sessions
to model large variation and assess the robustness of various approaches.
Keystroke biometrics can use “static text”, where a pre-defined text string, such as

a password, is analyzed at a certain time, e.g., during the log on process. For more
secure applications, “free text” with arbitrary input text and language should be used
to continuously authenticate a user. Free text authentications are typically achieved by
comparing some common word or sub-word strings that appear in both the enrollment
and the verification phases. It has been shown that frequently used words tend to
have better typing timing consistency [37]. To make timely decision for continuous
keystroke authentication, the verification accuracy achievable using a single word is
highly important and should be optimized first. Authentication accuracy can further
be improved by observing more words.
This book chapter is focused on algorithmic work reducing error rate of single word

“static text” task, but the discussed algorithms can be easily extended to the “free
text” application domain. Experimental studies have shown that accurate keystroke
biometrics can be achieved with a single word (with equal error rate < 5%) and thus
keystroke has the potential to be a highly accurate biometric modality with sufficient
well-chosen testing data.
The rest of this chapter is organized as follows. Section 2.2 gives a brief overview

of the current state of the art of keystroke biometric algorithms. Section 2.3 details
our new approaches to the problem of accurate and discriminative keystroke dynam-
ics model. Section 2.4 describes user authentication experiments and performance of
the proposed algorithms on the CMU keystroke dynamics dataset. Section 2.5 dis-
cusses challenges for practical keystroke technology deployment and future research
directions.

2.2 Keystroke Authentication Algorithm Literature
Survey

The use of keystroke dynamics for verification and identification of a user has a long
history and can be dated back to the 1970’s [16, 46]. Since then, more than 200
papers, patents, and thesis have been published to tackle this problem [38, 40, 43, 47,
48, 49, 50], leveraging advances in signal processing, patter recognition, and machine
learning. This area has been receiving growing research interest due to the increasing
concerns of cyber security and access control.
However, most work used privately collected dataset to assess their system perfor-

mance. This also makes the comparison of algorithm performance difficult, as each
data set contains different number of subjects, varying number of data sessions, cus-
tom data collection protocols, among many other confounding factors. As such, some
researchers have made their datasets available to the public, including the work by
Allen, Bello, Giot, Jugurta and Maxion [2, 5, 19, 15, 31]. As data collection is a non-
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trivial effort, these public datasets greatly reduce the barrier in this research field. Most
of the existing datasets are based on “static text”, with the exception of the BioChaves
and the recent CMU dataset, which contains both static and free text [15, 32]. Com-
pared to more mature biometrics such as fingerprints and iris, keystroke dynamics is
still at its very early stage and various existing public keystroke datasets contain very
limited number of subjects, ranging from over a dozen to over one hundred.
The most common keystroke dynamics features are based on the timing informa-

tion of the key down/hold/up events, although some custom commercial keyboard
can collect pressure information. This situation has changed dramatically with the
popularity of the mobile smart devices, which are typically embedded with a rich suite
of advanced sensors and will be detailed in the next section. The hold time or dwell
time of individual keys, and the latency between two keys, i.e., the time interval be-
tween the release of a key and the pressing of the next key, also called flight time,
are typically exploited. “Digraphs”, which are the time latencies between two succes-
sive key down press, are commonly used. “Trigraphs”, which are the time latencies
between every three consecutive key down press, and similarly, n-graphs, have been
investigated as well. In a keystroke study using free text, Sim and Janakiraman [45]
investigated the effectiveness of digraphs and more generally n-graphs for free text
keystroke biometrics, and concluded that n-graphs are discriminative only when they
are word-specific.
In addition, the total duration of certain strings can be used as features. The

relative order of duration times for different n-graphs was found to be more robust to
the variations than absolute timing [6, 20]. The relative feature, when combined with
absolute timing features, improved the authentication performance under free text
scenario. Furthermore, derived features, including first and second order statistics and
entropy of the basic lower level features, are investigated [36]. Other keystroke features
studied including typing speed, percentage of special character, editing patterns, error
rate, key-pair duration, n-graph duration [39, 52, 22].
From a pattern recognition and machine learning perspective, these approaches

can be broadly classified into four categories: statistical methods based on distance
metrics [51, 57], neural networks, statistical machine learning methods, and many
other algorithms [4]. A brief review is given here and more recent advances are given
in Section 2.4.
The first category uses the first and second order statistics of the basic features and

applies various distance metrics and hypothesis testing. For example, Gaines et al.
[17] performed a preliminary study on keystroke dynamics based authentication using
T-test on digraph features. Monrose and Rubin [37] later extracted keystroke features
using the mean and variances of digraphs and trigraphs. Using Euclidean distance
metric and Bayesian-like classifiers, they achieved correct identification rate of 92% on
their dataset. In addition to the Euclidean distance [7, 37], different distance metrics,
such as the Mahalanobis distance [7, 9], and the Manhattan distance [3, 29], were
also explored. Recently, we proposed a new distance metrics to combine the merits of
both the Mahalanobis distance and the Mahattan distance metrics [59].
Various artificial neural networks (ANN) have been applied to the keystroke classi-

fication problem, including perceptrons, backpropagation neural networks, and Art 2
neural networks [21, 34, 4]. Neural networks are well known to be capable of learning
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non-linear relationship among data dimensions. However, they often suffer from much
slower training, manual selection of model architecture, tuning of many parameters
with complex relationship, and poor generalization to new data.
Statistical machine learning algorithms, ranging from simple K-Nearest Neighbors

(KNN) classifiers [9], to Bayesian classifiers [37], and support vector machines (SVMs)
[56] have been applied to the keystroke classification problem. The SVMs have shown
to work well for both identification and verification tasks. Compared with ANN ap-
proaches, SVMs have fewer parameters to tune and can be highly efficient in terms of
both training and testing time.
The long history of keystroke research has also resulted in various other approaches,

including K-means methods [30], Fuzzy logic [21], Fuzzy-ARTMAP, Histogram equal-
ization of time intervals, Gaussian Mixture Model (GMM) [25], Hidden Markov Model
(HMM), and genetic algorithms.
Various studies have reported a wide range of performance for similar algorithms, be-

cause most studies used their own dataset. To address this issue, Killourhy and Maxion
collected and published a keystroke dynamics benchmark dataset [31]. Furthermore,
they evaluated fourteen existing keystroke dynamics algorithms on this dataset, includ-
ing Neural Networks [9], K-means [30], Fuzzy Logic [21], KNN, Outlier Elimination
[21], SVMs [56], etc. Distance metrics including Euclidean distance [7], Mahattan dis-
tance [3, 29] and Mahalanobis distance [7] were also included. This keystroke dataset
with the evaluation methodology and the performances of the state-of-the-art algo-
rithms, provide a good benchmark to objectively assess progresses of new keystroke
biometric algorithms. We report performance of recent advanced algorithms on this
data set in Section 2.4.

2.3 Adopting Advanced Voice Biometrics Approaches
to Keystroke Dynamics User Authentication

Most existing studies in keystroke authentication only use genuine users’ data at train-
ing time to build a model for each genuine user and apply a user specific threshold
at testing time for decision making on unforeseen test data. The key idea of re-
cent advanced algorithms is to take advantage of the large amount of existing data
from many subjects to build a background model of typical users, which enhances
generalization and discriminative capability of the models. Note that the testing im-
poster subject does not need to be seen at the training time. We introduce three
new algorithms into the keystroke authentication domain: Gaussian mixture model
with universal background model (GMM-UBM), identity vector (i-vector), and deep
neural network (DNN). A key common feature of these three algorithms is that an
unsupervised training is conducted on a large pool of subjects at the first stage to
allow the classifier take advantage of the overall data distribution in the feature space
for improved performance. This enables a much more informed model than traditional
methods which only use the data from the genuine data during the training and/or
testing even though additional data are available to model the variations in the feature
space.
For example, the traditional GMMs are trained on data collected from the genuine
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user alone. Although the imposters’ data are never seen, and not used in UBM train-
ing, the GMM-UBM approach has been a great success in state-of-the-art speaker
verification system [42]. Here we apply this method to the domain of keystroke au-
thentication.
Although many purely discriminative model approaches exist, such as ANNs and

SVMs, models trained on a large amount of background users, without access to the
real imposter’s data at training time, do not guarantee good generalization perfor-
mance to unforeseen imposters. Recently, DNN was proposed in the machine learning
community as a generative-discriminative hybrid approach [24]. The unsupervised
generative training step grants the model with good generalization capabilities to un-
foreseen test data, while the discriminate fine tune step endows the model with super
classification accuracy. It has achieved better performance than ANNs and SVMs ap-
proaches in a variety of applications, including hand-writing digits recognition, speech
and language modelling, face recognition, and object recognition. In this chapter we
apply the DNN modeling approach to keystroke dynamics biometrics as well.
The following subsections detail the basic theory of these new approaches.

2.3.1 Gaussian Mixture Model with Universal Background
Model (GMM-UBM)

2.3.1.1 Gaussian Mixture Model (GMM)

The Gaussian mixture model has been widely used in many statistical modeling tasks.
It is a parametric model in the sense that it is parameterized by the mean vectors and
covariance matrixes of data clusters with Gaussian distributions and the weights of all
Gaussian components. It is a non-parametric model in the sense the real distribution of
the data is unknown. A nice property of Gaussian mixture model is that with sufficient
number of mixtures, the GMM can approximate an arbitrary probability distribution.
However, a higher number of mixtures required more training data to achieve a well-
trained model. In practice, the number of mixtures is determined by the amount of
training data, the complexity of the real underlying data distribution, and the tradeoff
between the accuracy and computational complexity.
A GMM is a weighted sum of M multivariate Gaussian functions [26]. The proba-

bility of a feature vector under the GMM is given by

p (x |λ ) =
M∑

i=1
pibi (x)

where x is a D-dimensional feature vector, λ = {pi, µi,Σi}is the model parameter,
pi is the mixture weights for the multi-variants Gaussian component densities bi (x),
and µi,Σi are the mean vector and co-variance matrix for the multi-variant Gaussian
distribution. The co-variance matrixes are sometimes assumed to be diagonal to dra-
matically reduce the number of parameter needed to be estimated, thus reduce the
required amount of training data. These parameters are trained using a maximum-
likelihood estimation principle, implemented using the Expectation Maximization (EM)
algorithm. We perform an incremental GMM model training procedure, i.e., it starts
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with a single mixture Gaussian model and estimates its parameter from the data. The
single mixture Gaussian is then split into two mixtures of Gaussians and the parameters
are re-estimated from the training data using the EM algorithm. This process repeats
until the final desired number of mixtures is achieved. An important parameter in
GMM is the variance floor. When a certain mixture of Gaussian has little sample in
the training data, the estimated variance becomes very small to be a good estimate.
In this case, we use a floor number to replace the estimated variance and this grants
the model with better generalization capability.

2.3.1.2 GMM-UBM

Existing works in applying GMM to keystroke authentication is to train a GMM for
each genuine user. At testing time, a keystroke feature is evaluated against the genuine
user’s GMM and a threshold is applied to the likelihood of the feature vector to make
the decision [25].
The idea of GMM-UBM is to train another GMM from a large pool of so-called

background subjects (except the genuine user and the actual testing subjects), in
addition to the GMM for the genuine subject. When the pool of background subjects is
large enough, the UBM will have a good chance to reasonably represent any imposter’s
data. Thus, the imposter can have a relatively high likelihood score under UBM, as
compared to the genuine user’s GMM. On the other hand, as the UBM is trained from
a large pool of subjects, it is a relatively poor model for the genuine user, as compared
to the genuine user’s GMM, which is only trained from the genuine user. Thus, the
genuine user’s data has a better score on his/her own model as compared to the UBM.
A likelihood ratio test can then be performed based on scores from these two models
to make the authentication decision.

2.3.2 Identity Vector Approach

Identity Vector (i-vector) method was developed in the domain of speaker recognition
research [10]. It can be considered as a way to learn a new compact low dimensional
feature representation given an arbitrary sequence of feature vectors. This learning
is typically conducted in an unsupervised fashion using data from a large pool of
subjects. The learned new feature vector can then be either used to perform simple
vector distance based similarity matching or as input to any further feature transform
or machine learning modelling. This method has gained increasing popularity and
became the state-of-the-art technique in the field of speaker recognition [8, 14, 18].
Recently, it was also reported to achieve the best mobile gait authentication accuracy
on the largest mobile phone gait dataset [58].
The key advantages of i-vector method are:

1. It can be applied to any type of raw input feature.

2. It converts an input sequence of any length to a fixed low dimension feature
vector, thus enables compact modelling and very fast matching.
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3. Factor analysis is a build in step of i-vector training, which helps to remove many
confounding factors in biometric analysis and extract a unique identity feature
vector.

4. The i-vectors can be further processed with any existing discriminative feature
transform and machine learning method.

However, this method has been mostly used in the speech community and less known
to other fields of biometrics or object recognition. Effort to introduce it to the machine
learning community has just started [1]. In this chapter, we adopt the i-vector model
that is commonly used for speaker verification to keystroke biometrics. Despite their
different application domains, voice biometrics and keystroke biometrics are similar in
nature as both need to extract subject specific signatures from sensory data corrupted
with variations from various irrelevant sources. The i-vector extraction method using
total variability factor analysis provides an appealing solution to the keystroke identity
extraction problem.
In the following we outline the i-vector extraction procedure. Interested readers

should refer to [10] for more details. The i-vector modeling for user authentication
consists of three major steps:

1. Build a universal background model (UBM) using a Gaussian mixture model
(GMM) by pooling all or a subset of the feature vectors from the training data
set.

2. Given the trained UBM (Ω), we compute a supervector for each enrollment or
authentication keystroke feature vector of dimension F .

a) the posterior probability (Nc) and Baum-Welch statistics (F̃c) for each
Gaussian component are computed as:

Nc =
L∑

t=1
P (c |yt,Ω) , and F̃c =

L∑
t=1

P (c |yt,Ω) (yt −mc) ,

where mcis mean vector for Gaussian component c.
b) The supervector M is obtained by concatenating (F̃c) for all Gaussian

components to form a vector of fixed dimension C×F for an input sequence
of arbitrary length L.

3. Conduct factor analysis in the supervector space using a simplified linear model:

M = m+ Tw

wherem is a subject independent component, T is a low rank rectangular matrix,
and w is the i-vector. The training process learns the total variability matrix T
and a residue variability covariance matrix Σ. The i-vector is then computed as:

w =
(
I + T tΣ−1NT

)−1
T tΣ−1M,

where N is a diagonal matrix consisting of diagonal blocks of NcI.
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Once an i-vector is extracted for each keystroke, the similarity between two keystroke
is then computed as the cosine distance between their corresponding i-vectors:

d (w1, w2) = 〈w1, w2〉
‖w1‖ ‖w2‖

.

A simple threshold can be applied to the cosine distance score to make the final
decision of accepting or rejecting an authentication attempt. When many enrollment
sessions are available, multiply i-vectors can be computed for each subject, and more
advanced algorithms can be applied to these i-vectors, such as linear discriminative
analysis and SVM modeling for i-vectors. This study only uses simple cosine distance
based matching on i-vectors to perform authentication.

2.3.3 Deep Neural Networks (DNN)
Deep neural networks are probabilistic generative models that are composed of multiple
layers of hidden variables. The hidden variables typically have binary values and are
called the feature detectors. These hidden layers can be trained one layer at a time,
with the output of lower level layer serve as input to the higher level layer. The idea is
to build a hierarchical generative model, so that each higher level layer captures more
complex non-linear features in the data. These pre-trained two-layer generative models
are then collapsed into a single multi-layer model and serve as an initialized ANN for
further discriminative parameter fine tuning. The pre-training of a generative model
is important to the generalization capability of the final model. It also facilitates the
fine tuning of the DNN. It is well known that ANNs are sensitive to model parameter
initialization and can be easily trapped in local optimal. The DNN pre-train not only
avoids the random initialization of ANN parameters, but also helps to converge to
global optimal, and significantly speeds up the ANN training process.

2.3.3.1 Pre-Train of DNN

Specifically, the first step of DNN training performs a layer-wise unsupervised training
of restricted Boltzmann machines (RBMs). A RBM is one type of Markov random
field that has two layers: the visible layer and hidden layer. The units in the visible
layer (v), are connected to all units in the hidden layer (h) with associated weights
W . Note there is no connection within each layer. A simple RBM with four input
units and three hidden units is shown in Fig.(2.1).
The units in the visual layer can be real value, integer, or binary, depending on

the type of input data. The hidden units are typically binary stochastic variables, i.e,
h ∈ {0, 1}. The Gaussian RBM is chosen for the first layer of RMB to model the real
values of the keystroke features. The value of input and hidden variable defines the
state of the machine and the energy of the state {v, h} is defined as [44]

E (v, h; θ) =
D∑

i=1

(vi − bi)2

2σ2
i

−
D∑

i=1

F∑
j=1

Wij
vihj

σi
−

F∑
j=1

ajhj

where θ = {W,a, b, σ} are parameters specifying the RBM. D is the number of
input units, which is equal to the keystroke feature dimension. F is a user defined
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Figure 2.1: Restricted Boltzmann Machine.

parameter specifying the number of hidden units, a is a weight vector for the hidden
units, while b and σ are bias and variance parameters for the input layer. The binary
output of the first layer Gaussian RBM further serves as input for higher level RBMs
to capture more complex non-linear structure embedded in the data. This process is
also known as automatic feature engineering.
Higher level RBMs in the hierarchical generative are all defined as binary RBMs, i.e.,

both the visible and hidden layers contains only binary units. Their energy functions
are defined as

E (v, h; θ) = −vTWh− bT v − aTh

= −
D∑

i=1

F∑
j=1

Wijvihj −
D∑

i=1
bivi −

F∑
j=1

ajhj

The RBMs are stochastic and the joint distribution of visible and hidden units is
defined by

P (v, h; θ) = exp (−E (v, h; θ))
z (θ) ,

where z (θ) is the normalization factor, known as partition function, and can be
defined as

z (θ) =
∑

v

∑
h

exp (−E (v, h; θ)) .

The likelihood of the training data is then specified as

P (v; θ) =
∑

h exp (−E (v, h; θ))
z (θ) .

However, the exact layer-wise maximum likelihood training of the RBM is intractable
as the computation takes time that is exponential to the dimension of D and F . The
approximate solution is provided by a technique known as “Contrastive Divergence”
[23].
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Figure 2.2: Train DNN for keystroke dynamics authentication in two steps.
Left: unsupervised training of RBMs, Right: Convert RBMs into DNN.

2.3.3.2 Fine Tuning of DNN

The output of the unsupervised pre-train step is decks of RBMs, which can be stacked
together and be added with a final classification layer to form an initialized ANN.
This is conceptually illustrated in Fig.(2.2), where two RBMs are collapsed by sharing
the middle units and a final layer (with weight W3) is added to perform keystroke
classification. The parameters of the final classification layer can be trained the same
way as training a typical ANN with back-propagation.

2.4 Experiments
In this section, we evaluate the proposed keystroke biometric algorithms using the
CMU keystroke dynamics benchmark dataset [31] because it came with the perfor-
mance numbers of a range of existing keystroke dynamics algorithms for objective
comparisons.

2.4.1 The CMU keystroke dynamics dataset
The CMU benchmark dataset contains keystroke dynamics consisting of the dwell time
for each key and the latencies between two successive keys for static password string
“.tie5Roanl”. There were 51 subjects in the dataset. For each subject, there were eight
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Figure 2.3: Keystroke dynamics features for static key string “.tie5Roanl” from the
CMU keystroke dynamics benchmark dataset [31].

data collection sessions with at least one day apart between two sessions. 50 repeated
keystroke strings were collected in each session, resulting in a total 400 sample for
each subject.
For each typed 10-letter password and the final enter key, the dwell time and dia-

graphs give rise to a 21 dimensional feature vector. These feature vectors for three
subjects from the first four data collection sessions are shown in Fig.(2.3). Although
the keystroke features provide sufficiently distinguishing patterns for each subject,
they are highly correlated, with large scale variations, and typical of noise and outliers.
We have previously proposed a new distance metric to effectively handle these chal-
lenges that are intrinsic to keystroke dynamics data [59]. In this work, we show that
GMM-UBM, i-vector and DNN based approaches perform even better to model large
variations and correlations in the data.
We used the same evaluation methodology as in [31] to ensure objective performance

comparisons. For each subject, we used the first 200 feature vectors as the training
data. The remaining 200 feature vectors were used as positive test data and the first 5
samples from the remaining 50 subjects are used to form 250 negative feature vectors
as imposters in the authentication phase for this user. To demonstrate the advantage
of UBM, simple GMM (without UBM) experiment was also conducted for comparison.
For the GMM-UBM and DNN experiments, the first four samples from background
users were also included in the training set, resulting in additional 196 training samples
from the negative class. Note that to test each subject as an imposter, all of his/her
samples were excluded during the training time. It requires a total of 51*51 sets
of experiments, for each genuine and imposter pair, such that each used different
subjects’ data for training and testing. For the simple GMM case (without UBM),
only 51 sets of experiments are required.
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The authentication accuracy is evaluated using the Equal Error Rate (EER) where
the miss rate and false alarm rate are equal. The evaluations are performed for each
subject. In the GMM-UBM and DNN experiments, for each genuine user, one single
threshold is applied to all 51 tests. The mean and standard deviation of the equal
error rates for the 51 subjects are reported.

2.4.2 The GMM, GMM-UBM, i-vector, and DNN Modeling
Setup

For the GMM experiment, we build a Gaussian mixture model with 32 components
for each genuine user. The variance floor for all feature dimensions and all Gaussian
components are set to 0.01 to avoid poorly trained parameters. Each model for a
genuine user applies its own threshold value to the likelihood scores of all test samples
to compute the EER.
Under the GMM-UBM setting, for each genuine user, 51 sets of experiments were

conducted, one for each test subject, to exclude the test subject’s data from the UBM
subjects set. The UBM is also modeled with 32 mixture of Gaussian. For each testing
sample, the log likelihood ratio is computed for the genuine user model and the UBM
model. A single likelihood ratio threshold is applied to the 51 sets of experiment to
compute the EER.
We also performed 51 sets of experiments to evaluate the i-vector approach, one

for each genuine subject. In each experiment, the first 200 tokens from the genuine
subject and tokens 6 to 50 of other subjects are used to train the UBM and i-vector
extractor matrix. The UBM contains 256 Gaussians and the i-vector dimension is set
to 200.
To apply DNN to keystroke model, we first build a Gaussian RBM, with 31 visible

units and 100 hidden units, and a Binary RBM, with 100 visible units and 100 hidden
units. The ANN parameter fine tuning stops when the training error improvement is
less than 1%.

2.4.3 Experimental Results
The performance, measured in mean and stand deviation of equal error rate (EER),
of proposed GMM-UBM, i-vector and DNN approaches are listed in Table 2.1. For
comparison, some of the best published results on the same dataset are also included
in the table. The results have shown that the simple GMM based approach performs
very close to our recently reported best results based on combined Mahalanobis and
Mahattan distance, which outperform all 14 published algorithms on the same task
[31].
When we include background users’ data in the keystroke model, the GMM-UBM

approach reduced the EER significantly compared to the simple GMM approach. The
best performance is achieved using the DNN approach. Compared to the best reported
EER of 8.4% on this dataset [10], the DNN approach reduces the EER to 3.5%,
which is a 58% relative error rate reduction. This dramatic improvement is due to
DNN’s generative and discriminative modeling. The RBM generative modeling not
only effectively captures the non-linear dynamics in keystrokes, but also ensures better
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Table 2.1: Performance comparison of the proposed approach to the existing best re-
ported algorithms on the same CMU dataset. Mean and (standard devia-
tion) are shown for the equal error rate (EER). The proposed approaches
significantly outperform the state of the art approaches.

Algorithm EER
Neural Network (auto-assoc) [31] 0.161 (0.080)
SVM (one-class) [31] 0.102 (0.065)
Manhattan (scaled) [31] 0.096 (0.069)
Combined Mahalanobis and Mahattan distance [59] 0.084 (0.056)
GMM 0.087 (0.058)
I-Vector [10] 0.062 (0.053)
GMM-UBM 0.055 (0.052)
DNN [11] 0.035 (0.027 )

generalization to samples from new users. The DNN discriminative parameter fine
tuning step further boosts classification accuracy.

2.5 Discussion and Future Work
We have studied the characteristics of keystroke dynamics for traditional PC keyboards.
We have introduced three popular machine learning approaches in the field of speaker
verification to the domain of keystroke dynamics user authentication. These methods
feature generative models trained using both positive samples from the genuine user
and a large pool of background users, resulting in enhanced discriminative power. Our
experimental studies on the CMU keystroke dynamics dataset have demonstrated the
superior performances of the proposed GMM-UBM, i-vector and DNN approaches to
a spectrum of top performing keystroke dynamics classifiers using traditional distance
metrics statistics and advanced machine learning algorithms.
The achieved performance of at around 3% EER level is very encouraging, because

this is achieved using only a single word. As a potential continuous user authentication
modality, keystroke dynamics can conveniently acquire a large set of training and ver-
ification data from a specific user to achieve highly accurate keystroke authentication.
Different from traditional one time authentication, continuous authentication could
bring cyber technology security to a new level.
Although the proposed approaches are only evaluated on keystroke dynamics tasks

using static text, they can be easily extended to free text use cases for continuous
authentication. Given a large pool of free typing texts from a large set of subjects, the
discriminative power each word and sub-word string can be discovered. Future research
should work toward making large datasets of keystroke dynamics available to the re-
search community, investigating the more challenging problem of keystroke biometrics
using free text, developing richer key stroke features for mobile devices, studying con-
text dependent sub-word and across word models, and seamlessly integrating language
model score, i.e., the authorship, into the keystroke dynamic authentication system.
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In addition, to deploy the technology to the market, the following issues need to be
addressed: 1) Mitigate the effect of different hardware and network delay for remote
access applications. 2) Enhance security without impact work efficiency by using
subject-dependent threshold to balance two types of error. 3) Address the privacy
issue because the continuous keyboard input can contain sensitive information, such as
password and banking account, etc. 4) Like all existing biometics modalities, keystroke
dynamics does not work very well for everyone [54]. Even with the most advanced
algorithms, we noted poor performance for a few subjects. A multi-modal approach to
non-intrusive continuous authentication is required for practical system depolyment.
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