
CHAPTER 3

Continuous Authentication with Keystroke Dynamics

Patrick Bours and Soumik Mondal

In this chapter we will discuss how keystroke dynamics can be used for true continu-
ous authentication.We have collected keystroke dynamics data of 53 participants who
used the computer freely and we have analysed the collected data. We will describe
a system that decides on the genuineness of the user based on each and every single
keystroke action of the current user and we will represent the results in a new manner.
The continuous authentication system will lock out a user if the trust in genuineness
of the current user is too low. Ideally such a system would never lock out a genuine
user and detect an impostor user within as few keystroke actions as possible.

3.1 Introduction
Keystroke dynamics is used for recognition of a person by his or her typing rhythm.
Mainly this has been applied to strengthen the username/password log on mechanism.
In such a case, not only the value of the password needs to be correct, but also the
typing rhythm when entering the password (and maybe also username) needs to be
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correct [6]. However, after the initial log on procedure, the computer system does
not assume that a user changes during a session. Users do tend to leave computers
unattended while they are logged on, for longer or shorter periods of time, without
locking either computer or the room where the computer is located. During such a
period that the computer is left unattended, an impostor can get access. The impostor
then does not need to guess user’s password or even mimic the typing rhythm of the
genuine user. He has access to the same sources as the genuine user, meaning he can
read documents, copy or delete files, access social networks, or send email in the name
of the genuine user.
This is obviously an unwanted situation and we need to have a system in place that

checks if the user has changed after the log on procedure. Such a system is called a
Continuous Authentication (CA) system [14, 15, 16, 10, 1]. Because a user still uses
the keyboard after the log on procedure, to type documents, chat with friends and
colleagues, navigate the internet and much more, we can use keystroke dynamics also
to establish continuous authentication. The main difference between use of keystroke
dynamics for the log on procedure (called Static Keystroke Dynamics (SKD) in this
chapter) and keystroke dynamics for continuous authentication (called Continuous
Keystroke Dynamics (CKD) in this chapter) is that for SKD the typed information is
fixed, while for CKD the information is never fixed.
The two main requirements for a true CA system is (1) that a user is not interrupted

in his daily activity and (2) that the system uses each single keystroke to determine
the genuineness of the user. Requirement (1) is important because the system should
be unobtrusive. If a user is interrupted in his daily business then this might lead to
the user disabling the CA system. This implies that a CA system does not depend
on specific activities of the user, e.g. a CA system cannot be based on providing a
fingerprint because that requires the user to present his finger to a fingerprint scanner
on a regular basis. Besides keystroke dynamics one can also use mouse dynamics [2, 19]
or face recognition [27] for CA. The second requirement ensures that the CA system
does in fact continuously check the genuineness of a user. Most existing research in
Continuous Authentication is based on checking the genuineness of a user based on
a fixed block of N actions. These systems take as input N actions and the identity
of the user and provide a binary output if this input belongs to the provided identity
or not. Besides the fact that technically the identity is checked periodically and not
continuously, does this approach also have as a disadvantage that an impostor can
do N keystrokes before his identity is checked for the first time. That is why we
need requirement (2), that every single keystroke of the user will contribute in the
determination of the genuineness of the user. We need to be able at any point in
time, i.e. after every single keystroke, to lock the system if it is detected that a user
is an impostor. In this chapter we will introduce a CKD system that is capable of
deciding after every single keystroke if the user is the correct one or not and will be
able to lock the system at any time.
One further disadvantage of current research in CA is that it focuses on specific tasks

by the user. For example in [4] users were asked to type three different reports, each
of 400-500 words. It is known that typing behaviour changes based on the application
that a user is using [11], so in order to check the actual performance of a true CA
system it is important to allow the user to perform his daily activities when collecting
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Keystroke Dynamics data [14].
Most research on continuous keystroke dynamics reports performance in terms of

False Match Rate (FMR) and False Non-Match Rate (FNMR) or even Equal Error
Rate (EER) [1]. However, in this chapter we will show that these performance indica-
tors are not the best to use in case of CA. It is in fact not important to know if an
impostor is detected, but when he or she is detected, i.e. how many activities he/she
has been able to perform before detection. We will use ANIA (Average Number of Im-
postor Actions) and ANGA (Average Number of Genuine Actions) as our performance
indicators. Hence, our performance indicator shows how much an impostor can type
before he is locked out and how much can a genuine user type before he is, wrongfully,
locked out of the system. These are the equivalents of FMR and FNMR for a CA
system.
In this chapter we will give an overview of the research done in CKD and we will

introduce our own system for evaluating the performance. Our CKD system is based
on trust in the genuine user and we will use a so-called penalty-and-reward function
to adjust the trust based on each single keystroke by the user [10]. We will further
focus on performance evaluation and we will show our current results in comparison
to other research in this area. For our analysis we collected keystroke dynamics data
of 53 persons while they used their own computer for their daily activities. The data
collection took at least one week per person, but due to different use of the computer
does the amount of collected data vary a lot. We will finally present conclusions and
topics for further research and focus on potential application areas.

3.2 Related Work
In Keystroke Dynamics (KD), users are identified or authenticated based on the way
they type on a keyboard. When a password is typed not only the correctness of the
password itself is checked, but also if the typing rhythm when entering the password
is correct. This process is called password hardening. The use of KD as a method
of identification is not new. During the early days, the telegraph operators were
able to identify each other by their Morse code typing pattern. This identification
method, known as “The Fist of the Sender”, was used as a verification or identification
method during World War II. Nowadays software is available for password hardening,
for example, the software from BioPassword (see http://www.biopassword.com).
A KD based authentication or identification system is a low cost and easy to imple-

ment security solution because, this system is software based. In such a system, the
keystroke timing information has to be captured, and features for authentication or
identification are extracted. Sometimes some special keyboard (pressure sensor based
keyboard [26] or key press sound information [21]) was used to capture the key pressure
information or key sound information for the same.
Research on continuous authentication was started on 1995 when Shepherd [24]

showed some impressive result on continuous authentication using keystroke dynamics.
These days continuous authentication is getting more popular because of the security
requirements in office environments and the DARPA’s Active Authentication project
announced in 2012.

http://www.biopassword.com
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Dowland et al. [14] used digraph, tri-graph and word latency as a feature and
distance based classifier as a classification tool and achieved an FAR of 4.9% and an
FRR of 0% over 35 users.
Gunetti et al. [15, 7] have used free text keystroke dynamics for authentication.

They have used digraph latency disorder as a feature and distance based classifier as
a classification tool. They got an FAR of 3.16% and an FRR of 0.02% for full session
over 40 legitimate users and 165 imposter users.
Stewart et al. [25] have introduced burst authentication. The primary motivation

for using this concept of burst authentication is to reduce the frequency of indepen-
dent authentication checks. This has the advantages of reducing the false alarm rate,
avoiding the capture of unnecessarily large quantities of data and using excessive com-
puting resources to process the input while still providing sufficient data for continual
training of the biometric system. They have used the keystroke time information and
stylometry as a feature and KNN with Euclidean distance as a classifier. They have
achieved a 0.5% EER for 40 participants.
Messerman et al. [18] presented a non-intrusive verification scheme which con-

tinuously verifies the user identity using free text based keystroke dynamics. Their
solution is an extension of the scheme of Gunetti et al. [15, 7]. Here the target
applications which require decision-making processes in real-time are webmail appli-
cations. They have addressed major challenges in these scenarios such as changes
in human-behaviours, scalability and response time. They have provided the solution
like, an adaptive user model, extend the decision process, and bring in a randomized
approach for addressing the scalability issue. They have tested over a data set which
has been collected from 55 users over a period of a year. Evaluation of the solution
was performed under consideration of external and internal attackers and achieved
satisfactory results. They have used n-graph time latency as a feature and distance
based classifier as a classification tool. They have achieved an internal FAR of 2.02%,
an external FAR of 2.61% and an FRR of 1.84% with the execution time of 0.57 sec.
Ordal et al. [22] have used key press duration and digraph latency as a feature

distance based classifier for their work. They have achieved zero false lockout rates
and 5% missed lockout rates by using 150 keystroke segments.
Ahmed et al. [1] have used key press duration and digraph latency as a feature and

Artificial Neural Network as classifier for their work and achieved a 2.46% EER for 53
users.

3.3 Background Knowledge
In this section, we are going to discuss some background knowledge required to better
understand this research. This includes some classification techniques and our analysis
methods.

3.3.1 Support Vector Machine
Support Vector Machine (SVM) is a very well-known supervised learning algorithm
which can be used for classification problem [12]. This classifier is capable of creating
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a linear decision margin that is as wide as possible, depending on the Support Vectors
(SV). The SV are those data points from the different classes that are closest to the
decision line. In this research, we have used the LibSVM software distribution for the
SVM classifier [13]. The main motivation to use the LibSVM is not only because it is
a well implemented optimization technique for the cost function of SVM and widely
used in the research community, but also because it will provide the classification score
(probability) along with the class label. In our research, we are going to use only the
classification score for our analysis. Initially we tried SVM with a Linear Kernel, but
found that the classifier did not perform well due to the small feature set (see Section
3.4.3). We decided to use Gaussian Kernel as a similarity measure function in this
research.

3.3.2 Artificial Neural Network

Artificial Neural Network (ANN) is a combination of multiple artificial neurons which
can be used for classification and regression analysis [9]. In our research, the neurons
consist of a linear activation function with a 2-layer Feed-Forward neural network. In
this research, we have used the NETLAB software distribution for the ANN classifier
[20]. NETLAB has a well implementation of Scaled Conjugate Gradient algorithm
which is efficient to optimize the cost function and also it will reduce the ANN training
time. We have tested different numbers of hidden nodes, and different regularization
parameter values (α) for different users to maintain the trade of between Bias and
Variance and the training time of the classifier model.

3.3.3 Counter-Propagation Artificial Neural Network

Counter-Propagation Artificial Neural Network (CPANN) is a hybrid learning mecha-
nism based on Artificial Neural Network to handle the supervised problems. In CPANN,
the output layer is added to the Kohonen layer which is very similar to the Self Organiz-
ing Maps and provides both the advantages of supervised and unsupervised learning.
It can also guarantee to find the correct network weights, that can be seen as draw-
backs of regular back-propagation networks. We have used a free CPANN software
distribution for our research [5]. The number of neurons is optimized for different
users.

3.3.4 Multi-Classifier Fusion

Multi-Classifier Fusion (MCF) is a technique to combine multiple classifiers on a same
biometric modality to improve the performance of that modality [17]. Researchers
generally prefer to use multiple classifiers on a same modality when the modality is
considered to be a weak modality. The architecture of the MCF technique is very
much similar to the multi-modal biometric technique but, with MCF technique only
score level and decision level fusion are possible [23].
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3.3.5 Trust Model
The concept of Trust Model was first introduced by Bours [10]. In this model, the
behaviour of the current user is compared to the template of the genuine user. Based
on each single action performed by the user, the trust in the genuineness of the user
will be adjusted. If the trust of the system in the genuineness of the user is too low,
then the user will be locked out of the system. In particular if the trust drops below
a pre-defined threshold Tlockout then the system locks itself and will require static
authentication of the user to continue working.
The basic idea is that the trust of the system in the genuineness of the current

user depends on the deviations from the way this user performs various actions on
the system. If a specific action is performed in accordance with how the genuine user
would perform the task (i.e. as it is stored in the template), then the system’s trust in
the genuineness of this user will increase, which is called a Reward. If there is a large
deviation between the behaviour of the genuine user and the current user, then the
trust of the system in that user will decrease, which is called a Penalty. The amount of
change of the trust level can be fixed or variable [10]. For example, a small deviation
from the behaviour of the user, when compared to the template, could lead to a small
decrease in trust, while a large deviation could lead to a larger decrease.
No single person will be able to always behave in exactly the same manner [8].

For the genuine user this means that he will also sometimes deviate from his normal
behaviour, which will lead to a decrease in trust. However, the majority of actions
that a genuine user will perform will be close to his normal behaviour, i.e. will lead
to an increase of trust. Overall this would lead to a high level of trust. For an
impostor however the opposite holds. In some cases he will behave as the genuine
user, increasing his level of trust, but the majority of actions will lead to a decrease
in trust due to the deviation from the behaviour of the genuine user. This will then
lead to a general decrease of the trust over time for an impostor user. Obviously an
ideal system should perform in such a way that the trust in anyone other then the
genuine user will decrease fast to a value below the threshold Tlockout. In such an
ideal system, also a genuine user would never reach a trust level that would result
in a lockout, i.e. the genuine user would not notice the influence of the continuous
authentication system in his daily activities.

3.4 Data Description and Processing
In this section we will discuss the data description and data processing techniques used
in this research. This also includes data collection and feature extraction process.

3.4.1 Data Description
We have designed a Windows operating system based logging tool, which can capture
the Keystroke and Mouse interaction data continuously. Log data is stored locally in
a CSV file or can be transmitted to a server over a secure channel. Privacy of the
users and confidentiality of the sensitive data were taken into account throughout the
development of the tool.
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Table 3.1: Data format for keystroke events.

Event ID Event Type Action Value Time Relation Flag Additional fields

n ’K’ ’D’ String ms evt. ID Int n/a
’U’ Count

The data format for keystroke events is shown in Table 3.1. The event type is
always ’K’. Keystroke events have only two types of actions, key press (’D’/down) and
key release (’U’/up). The UTF-8-encoded Value field states which key was pressed
or released; it is either the typed character or a String with a descriptive key name,
enclosed by ’|’, for example "|enter|" or "|space|". An ISO8601-compliant time-stamp
of when the event occurred is recorded in milliseconds. Flag is an Integer indicating
which alternate/system key was active. Bit 0 (LSB) is set when the Alt key was
down, bit 1 is set for Ctrl, bit 2 for Shift, bit 3 for Win, bit 4 for Caps Lock, bit 5
for Num Lock, bit 6 for Scroll Lock. E.g., if Alt+Shift was pressed, Flag would
be set to 5. In case of a key up event, an additional field Count indicates if a key was
kept down for a longer period of time.

3.4.2 Data Collection
Due to a high degree of privacy concern, we have managed only to get 53 volunteers
to participate in our experiment. We have deployed our data logging software among
these 53 volunteers and collected the data continuously for 5 to 7 days. All the
participants of this data collection process are university students and permanent staff
members and they are regular computer users. Our collected data has the following
properties:

1. No instructions or any specific task were given to the user;

2. This continuous data collection was done in a complete uncontrolled environment
to represent the users natural computer usage behaviour;

3. All of our participants installed the software on their own system to remove the
effect on the natural behaviour due to change of hardware.

Table 3.2, shows the quantitative and qualitative comparison between our data and
the data collected from previous research on continuous authentication. The collection
software collected both keystroke dynamics information as well as mouse related ac-
tivities. On average a user provided 47600 keystroke related actions and 29200 mouse
related actions. In this paper we only consider the keystroke dynamics related data.
We have separated our data to build and train the system (training dataset), param-

eter adjustment of the algorithms used in this research (validation dataset) and finally
to test the system performance (test dataset). The 35% of the total data was used
as a training dataset, 10% of the of the total data was used as a validation dataset
and the remaining 55% of the data (or approximately 26200 keystroke dynamics data
samples) was used as a test dataset. In fact, if a user provided a large amount of
keystroke related data then the amount used for training was limited to a maximum of
20000, which means that even more data of that user would be available for testing.
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Table 3.2: Data comparison with previous research.

Reference # User Time period (per user) Environment Task Applications
[7] 44 5 times Controlled Fixed Predefined
[14] 35 3 months Uncontrolled Uncontrolled MS Windows
[22] 26 several days Uncontrolled Uncontrolled Uncontrolled
[18] 55 12 months Uncontrolled Uncontrolled Web-mail
[25] 30 4 sessions Controlled Fixed Predefined
[1] 53 209 hours Uncontrolled Uncontrolled Uncontrolled
This work 53 5-7 days Uncontrolled Uncontrolled Uncontrolled

3.4.3 Feature Extraction
In our research, we have converted the keystroke events into two different actions.

1. Single Key Action, where the feature is the key hold time.

2. Key Digraph Action, where the features are the Total Duration, the time
between first key press and second key press (Down-Down Time), the time
between first key release and second key press (Up-Down Time) and the time
between first key release and second key release (Up-Up Time) of a particular
key digraph [3].

Figure 3.1, is the graphical representation of the keystroke dynamics feature extraction
process. In our analysis, we have applied a constraint for Key Digraph Action that
the latency between two consecutive keys should be below 2000 ms. Reason for this
is that such a high latency does not represent the normal typing behaviour of a user,
but represents a pause in the typing.

3.4.4 Classification
We have done three different verification processes in our analysis, which are following:

1. Verification Process 1 (VP-1): In this protocol, we are not going to use any
imposter data during the template building phase and we used 50% of the
imposter users (26 biometric subjects) for algorithmic parameters adjustments.

2. Verification Process 2 (VP-2): In this protocol, we have considered all the im-
poster users during the template building phase and parameters adjustment
process for algorithms.

3. Verification Process 3 (VP-3): In this protocol we have only considered 50% of
the imposter users (26 biometric subjects) in the template building phase and
parameters adjustment process for algorithms.

We have applied separate classification techniques for different modalities along with
different Verification Processes. The description of these techniques is given in the
below.
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Figure 3.1: Keystroke dynamics features.

Single Key Classification

VP-1 We have used pairwise Scaled Euclidean Distance for particular key obser-
vations for this verification process. For example, the key a has n observations on the
training data, then we will get n scaled Euclidean distances for the new test sample
of a. The distance metric vector used is (f1, f2, f3) = (mean, minimum, maximum)
of these n distance values. From these 3 attributes we are going to calculate a score
that is going to be used in the Trust Model (see Section 3.5.1) in the following way:

sc = 1− f1 − f2

f3 − f2

VP-2 In this protocol, we have used 2 regression models and one prediction model
in a multi-classifier architecture. For regression models we have applied ANN and
CPANN, and for prediction model we have SVM. The score vector we used here is
(f1, f2, f3) = (Scoreann, Scoresvm, Scorecpann). From these 3 classifier scores we
are going to calculate a score that is going to be used in the Trust Model (see Section
3.5.1) in the following way:

sc = w1 × f1 + w2 × f2 + w3 × f3

w1 + w2 + w3

where, w1, w2 and w3 are the weights for the weighted fusion techniques. The weights
are optimized using Genetic Algorithm techniques (see Section 3.5.2).
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VP-3 We have followed here the same classification approach as described for VP-2.

Key Digraph Classification

VP-1 For a digraph action, we have four attributes on the feature vector. Here we have
used two distance metrics, i.e. pairwise Scaled Euclidean Distance (SED) and
Correlation Distance (CD) for particular key observations. For example, assume
the key digraph ab has n observations on the training data. Now, we will get n scaled
Euclidean distances and n Correlation Distances for the new test sample of digraph
ab. Then we are going to take distance metric vector as (f1, f2, f3) = (mean of SED,
minimum of SED, maximum of CD). From this we are going to calculate the score sc
used in the Trust Model of Section 3.5.1 in the following way:

sc = f1 × f3

f2
.

We have followed the same classification approach as described in the previous section
for VP-2 and VP-3 verification processes.

3.5 Methodology
This section describes the methodology we have followed to carry out analysis.

3.5.1 Applied Trust Model
In this research, we have implemented a variable Trust Model. The model uses several
parameters to calculate the change in trust and to return the system trust in the
genuineness of the current user after each separate action performed by the user.
All the parameters for this trust model can be user specific. Also, for each user the
parameters can be different for different kind of actions. The actual value for these 4
parameters are optimized using Genetic Algorithm optimization (see Section 3.5.2).
The change in trust (∆T rust) is calculated according to Eq.(3.1) and depends on

the classification score of the current action performed by the user as well as on 4
parameters. The parameter A represents the threshold value between penalty and
reward. If the classification score of the current action (sci) is equal to this threshold
then ∆T rust = 0. If sci > A then ∆T rust > 0, i.e. a reward is given and if sci < A
then ∆T rust < 0, i.e. the trust decreases because of a penalty. Furthermore, the
parameter B is the width of the sigmoid for this function (see Fig.(3.2)), while the
parameters C and D are the upper limit of the reward and the penalty. In Fig.(3.2),
we have shown the ∆T rust produced by the Eq.(3.1) based on the classification score
of the current action for different parameters.

∆T rust(sci) = min{−D +D × (
1 + 1

C
1
C + exp(− sci−A

B )
), C} (3.1)

If the trust value after i actions is denoted by Trusti, then we have the following
relation between the trust Trusti−1 after i − 1 actions and the trust Trusti after i
actions when the particular ith action had a classification score sci:
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Figure 3.2: Score sc vs. ∆T rust (sc) from Eq.(1) for different parameters.

Trusti = min{max{Trusti−1 + ∆T rust(sci), 0}, 100}. (3.2)

3.5.2 System Architecture
In this section, we are going to discuss the methodology of our system. The system
was divided into two phases (see Fig.(3.3)).
In the training phase, the training data is used to build the classifier models and

store the models in a database for use during the testing phase (marked as dotted
arrow in Fig.(3.3)). Each genuine user has his/her own classifier models and training
features.
In the testing phase, we are going to use test data which was separated from the

training data for comparison. In the comparison, we will use the models and training
features stored in the database and obtain the classifier score (probability) on each
sample of the test data according to the performed action. This score will then be
used to update the trust value Trust in the trust model (see Section 3.5.1). Finally,
the trust value Trust is used in the decision module, to determine if the user will be
locked out or can continue to use the PC. This decision is made based on the current
trust value and the lockout threshold (Tlockout).
For each action done by the current user, the system calculates the score for that

action (see for details the subsections in Section 3.4.4) and used that to calculate the
change in trust according to Eq.(3.2). The parameters A, B, C, and D in Eq.(3.1)
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Figure 3.3: Block diagram of the proposed system.

are dependent on the type of action and were optimized by Genetic Algorithm
optimization technique, where the cost function was to maximize ANGA − ANIA
(see Section 3.5.3 for description of ANGA and ANIA).

3.5.3 Performance Measure
In the testing phase the performance of the system will be measured in terms of Average
Number of Genuine Actions (ANGA) and Average Number of Impostor Actions (ANIA)
[19]. In this case an action of the user can be anything done with the Keyboard. The
details explanation of the performed action was given in Section 3.4.3.
In Fig.(3.4), we see how the trust level changes when we compare a model with test

data of an impostor user. In this figure is the trust level displayed on the vertical axis,
while the horizontal axis displays the number of typed keys. The trust will drop (in
this example) 5 times below the lockout threshold (Tlockout marked with red color)
within 500 user actions. The value of ANIA in this example equals (N1 +N2 +N3 +
N4 + N5)/5. We can calculate ANGA in the same way, if the genuine user is locked
out based on his own test data. In our analysis, whenever a user is locked out, we
reset the trust value to 100 to simulate the start of a new session after a log on to
the system. In Fig.(3.4) can clearly be seen that the trust is set back 5 times to 100.
The maximum value for trust is set to 100, even if a reward would give rise to a
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Figure 3.4: Trust for impostor test set. X-axis represents action number and Y-axis
represents system trust.

a higher trust value. The reason for this is that otherwise the genuine user could be
working for a longer time and build up a high trust level, say for example a trust of
1000. This means that if an impostor would take over the computer at that point of
time, he could first profit from the high trust value that was build up by the genuine
user, allowing him more time for malicious activities before the trust level would drop
below the lockout threshold.
The goal is obviously to have ANGA as high as possible, while at the same time the

ANIA value must be as low as possible. The last is obviously to assure that an impostor
user can do as little as possible, hence he/she is detected as quickly as possible.

3.6 Result Analysis
In this section, we are going to analyse the results that we got by applying the analysis
discussed in Section 3.5. In this research, we have performed leave-one-out testing.
Therefore, we have test data of 1 genuine user and 52 impostor users.
The total number of data sets of genuine users is 53 and the total number of data

sets of impostor users is 53 × 52 = 2756. We are going to report the results in terms
of ANIA and ANGA along with the total number of impostors not detected for person
based lockout threshold (Tlockout) which was optimized by using Genetic Algorithm.
Interpretation of the tables: When we present the results from our analysis, the

results are shown for 4 possible categories. The categories are divided based on genuine
user lockout and non detection of impostor users. Each of the 53 biometric subjects
can be classified in 4 categories:

– Very Good : This is the best case category. In this category, the genuine user
is never locked out, and all the 52 impostors are in fact detected as impostors.
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– Good : This category is divided into two parts based on the trade off between
security and the user friendliness.

• The genuine user is not locked out, but some impostors are not detected.
• The genuine user is locked out by the system but all the impostors are
detected.

– Bad : In this category, the genuine user is locked out by the system, while some
of the impostors are not detected.

– Ugly : In this case will the ratio between ANGA and ANIA also is low or more
precisely ANIA is higher than the ANGA.

In our analysis, the system trust was calculated based on the actions described in
Section 3.4.3. The column ’# Users’ in Tables 3.3, 3.4, and 3.5, will show how many
models will fall within each of the above categories (i.e. the values sum up to 53).
In the column ’ANGA’ a value will indicate the Average Number of Genuine Actions
in case indeed genuine users are locked out by the system. If the genuine users are
not locked out, then we actually cannot calculate ANGA. The column ’ANIA’ will
display the Average Number of Impostor Actions, and is based on all impostors that
are detected. The actions of the impostors that are not detected are not used in this
calculation, but the number of impostors that is not detected is given in the column
’# Imp. ND’. This number should be seen in relation to the number of biometric
subjects in that particular category. For example in the second line of Table 3.3 we
see that for 22 impostor users are not detected for a total of 10 biometric subjects.
Given that for each biometric subject there are 52 impostor users, this means that 22
out of 10 × 52 = 520 impostor users are not detected, i.e. approximately 4% of the
impostors for these three biometric subjects.
Table 3.3, shows the result we got from our analysis for VP-1. We can observe from

the table that 31 participants qualify for the Very Good category, where the average
ANIA is 304 actions. In this category none of the genuine users is locked out and all
of the impostor users are detected. In the category Good we find 19 participants. Of
these there are 10 genuine users that are not locked out but the average ANIA related
to these 10 user is relatively high (1317 actions) and a total of 22 imposters were not
detected (i.e. 4%). The remaining 9 genuine users in this category were locked out
at least once by the system. For these users we have an average ANGA and ANIA
of 1772 and 411 actions, respectively. There are only two participants that fall into
the Bad category where, ANGA and ANIA are 8942 and 771 actions respectively and
three imposters are not detected (i.e. 3% of the impostors is not detected). Finally we
found that one participant falls into the Ugly category where ANGA and ANIA are 105
and 187 respectively. Clearly this represents a user that is not sufficiently protected
by the system because he/she is locked out even faster than the impostor users.
Tables 3.4 and 3.5 represent similar findings for the analysis for VP-2 and VP-3

respectively. Results are very similar to the ones we reported above. VP-2 seems to
give better results than VP-1 where the number of genuine and impostor actions for
the first two categories are concerned. On the other hand we see more genuine users
in the last two categories and for those categories we can also see that impostors can
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Table 3.3: Results obtained from our analysis for VP-1.

Categories #User ANGA ANIA # Imp. ND
Very Good 31 304

Good 10 1317 22
9 1772 411

Bad 2 8942 771 3
Ugly 1 105 187

Table 3.4: Results obtained from our analysis for VP-2.

Categories #User ANGA ANIA # Imp. ND
Very Good 29 275

Good 11 723 27
8 3364 218

Bad 2 2382 852 5
Ugly 3 261 335

Table 3.5: Results obtained from our analysis for VP-3.

Categories #User ANGA ANIA # Imp. ND
Very Good 30 155

Good 14 620 29
5 2299 220

Bad 3 17405 573 7
Ugly 1 475 591 2
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do more actions compared to VP-1. Results for VP-3 seem to be better than for VP-1
because less genuine users are locked out from the system, and if they are locked out
then they can perform more actions on average. Only for the genuine user in the Ugly
category we can clearly see that impostors can perform many actions and even 2 of
them are not detected by the system.

3.7 Conclusion
In this chapter we have discussed a real continuous authentication system that acts on
each and every separate keystroke of a user. We described the trust model where the
trust is updated based on correct (reward) and deviating (penalty) typing behaviour.
We have collected data of 53 participants over a period of 5 to 7 days and we have
analysed that data in 3 different settings. We have not found major differences in
the results found for any of these 3 analysis settings. From the results in the previous
sections we can see that the described Continuous Keystroke Dynamics Authentication
system gives good or very good results for the majority of genuine users. However, we
also clearly see that a number of genuine users does not perform very well and that
both the number of undetected impostors, as well as the average number of actions
that can be performed by an impostor, preferably should be significantly lower.
In the future we will apply different classification techniques as well as different trust

change functions to improve the results we have found so far. We will also investigate
in detail why specific genuine users do not perform very well and use this information
to create a better system.
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