
CHAPTER 4

Keystroke Dynamics Advances for Mobile Devices Using
Deep Neural Network

Yunbin Deng and Yu Zhong

Recent popularity in mobile devices has raised concerns on mobile technology se-
curity, as not only sensitive and private data are being stored on mobile devices, but
also allowing remote access to other high value assets. This drives research efforts
to new mobile technology security methods. Fortunately, new mobile devices are
equipped with advanced sensor suite, enabling a multi-modal biometrics authentica-
tion solution, to include voice, face, gait, signature, and keystroke authentication,
among others. Compared with other modalities, keystroke authentication offer some
very attractive features: 1) non-intrusive, either password or free-text typing keystroke
authentication can be applied without affecting users’ daily user of the device; 2) it can
work on continuous authentication mode for free typing; 3) it can leverage a unique
set of advanced build in sensors, including accelerometer and gyroscope to capture
rich typing information than raw timing pattern. We present a deep learning approach
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[12], which is a very powerful advanced machine leaning method, to the challeng-
ing problem of keystroke dynamics biometric. We further take advantage of the rich
sensor modalities available for mobile devices and strengthen our keystroke dynamics
biometrics using multi-modal typing features.

4.1 Introduction

In the past few years, mobile devices with touch screen features have been used by
more and more users. In the year 2013, over 1 billion smartphones had been sold.
Smartphone users range from teenagers to presidents, from civilian to military per-
sonnel. These devices contain lots of private, personal, and business information, and
sometimes are used to remotely access information critical to national security. How-
ever, these devices have no physical security protections like the traditional PC and
workstation have. As such, the security of these mobile devices poses greater challenge
than traditional office equipment. For example, a stolen unlocked smartphone could
potentially leak all critical information stored on the phone and some other remotely
accessible data.
On the bright side, these mobile devices are equipped with many sensing modalities

not available on traditional computing equipment. Sensors suite on a modern device
can include: touch screen, accelerometer, gyroscope, magnetometer, camera, finger
scanner, microphone, GPS, proximity sensorhear rate sensor, gesture sensor, barom-
eter, etc. Among them, touch screen sensors, accelerometer, and gyroscope can be
used to strengthen keystroke dynamics authentication on mobile devices [21, 31]. The
touch sensor can sense not only the event of touching, but also the size and pressure
of touching. As such, mobile devices have great potential to achieve high security if
proper technologies are developed to exploit these rich sensing modalities.
To meet the new challenges for mobile keystroke dynamics biometrics, we present

a deep learning approach [12], which is a very powerful advanced machine leaning
method. Since its introduction, it has dominated the speech analysis field, drastically
improving performance records on many tough problems that have been kept unsolved
for years. It is starting to take over other challenging research fields as well, e.g., face
recognition [27]. We have previously applied deep learning method to static keystroke
dynamics biometrics authentication for desktop computers, where it has demonstrated
superior performance compared to the state-of-the-art. In this chapter we investigate
the deep learning approach to keystroke dynamics authentication on mobile devices
[6], and explore additional sensory data available on mobile devices for augmented
keystroke dynamics biometrics. We will evaluate our approach on mobile keystroke
dynamics dataset and compare it with the state-of-the-art.
The rest of this chapter is organized as follows. Section 4.2 gives a review of mobile

keystroke biometrics. Section 4.3 introduces deep learning approach to keystroke
dynamics authentication for mobile devices. Section 4.4 describes user verification
experiments and performance of the proposed algorithms on public data set. We draw
conclusions and layout future work in Section 4.5.
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4.2 Mobile Keystroke Dynamics Authentication
Literature

Keystroke dynamics refers to the habitual patterns or rhythms an individual exhibits
while typing on a keyboard input device. These rhythms and patterns of tapping are
idiosyncratic, in the same way as handwritings or signatures, due to their similar gov-
erning neurophysiological mechanisms. Keystroke biometrics has desirable properties
due to its low cost, user-friendliness, and non-intrusiveness. Continuous authentica-
tion is possible using keystroke dynamics just as a mere consequence of people’s use
of computers. Keystroke dynamics biometrics has been an active research area for a
couple decades [9, 10, 14, 15, 17, 19, 22, 23, 30, 32].
Clarke and Furnell performed a feasibility study on keystroke based user authenti-

cation on mobile phones [4]. Key hold time and error rate (number of pressing the
backspace key) were used as features in their study. They achieved 12.8% EER us-
ing neural network classifiers on mobile handset with 12-key hardware keyboard [5].
Maiorana et al. [20] also investigated the feasibility of using keystroke dynamics for
user verification on mobile phones. They proposed a new statistical classifier which
is computational efficient for use in a mobile environment. They assessed the dis-
criminative power of different subsets of keystroke timing features, and obtained an
EER of 13.59%. Their study indicates that keystroke dynamics biometrics provides
effective authentication for mobile devices, but needs boost in order to facilitate a
highly secure authentication scheme. Simple statistical methods were also employed
by Campisi et al. [2] for keystroke dynamics biometrics on mobile phones. Their
analysis reinforced the suggestion that for mobile devices, a strong secure authenti-
cation scheme cannot rely solely on keystroke dynamics; however keystroke dynamics
can be a valuable module of a more complex security system. Buchoux and Clark
[1] studied various classifiers for keystroke analysis on smart phones, and their study
suggested that statistical classifiers are the most effective given the trade-off between
computational requirements and authentication accuracy. Zahid et al. investigated
keystroke dynamics for mobile phones with numeric keyboards where each key is mul-
tiplexed for several characters [28]. They proposed four digraphs customized for these
keyboards: horizontal/vertical digraph which is the time to switch between keys hori-
zontally/vertically, and non-adjacent horizontal and vertical digraph which is the time
to switch between non-adjacent keys horizontally/vertically. They demonstrated that
these features, combined with the conventional key hold time and error correction
rate, were capable to capture user characteristics. Using Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) classifiers with these features, they obtained an
average error rate of 2% FAR after the verification mode on a dataset containing 25
subjects.
Trojahn and Ortmeier [29] compared keystroke dynamics performance using hard-

ware keyboards and software keyboards on mobile phones during the login process.
They found that despite a small performance degradation using virtual keyboard in-
put, it is still feasible for keystroke dynamics biometric authentication. Kambourakis
et al. [18] proposed to enhance traditional keystroke dynamics features with speed and
distance the finger moved for smartphones with touchscreens. This upgrade resulted
in an EER of 26% on a 10-digit PIN and an EER of 13.6% on short passphrases.
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As we have discussed that although it provides effective authentication scheme for
mobile devices, keystroke dynamics alone may come short of meeting strong secu-
rity requirements. Fortunately there are many advanced sensors embedded in mobile
devices which may be exploited for improved authentication performance. These sen-
sors can either facilitate more comprehensive keystroke characterization for augmented
keystroke dynamics biometrics, or provide other biometric modalities to be fused with
keystroke dynamics for improved system authentication performance.
Touchpad pressure sensors measuring finger pressure exerted on touchpad during

typing events provide straightforward augmentation for keystroke dynamics biometrics
for mobile devices with touch screens. Saevanee and Bhatarakosol [24] explored the
use of finger pressure on touch pad in addition to keystroke dynamics for user au-
thentication. They found that finger pressure features are more discriminative than
the conventional keying time features, and obtained an accuracy of 99% using finger
pressure features with the PNN analytical method. Jain et al. [16] also suggested
that by fusing touch screen features with conventional keystroke features, superior
performance to hardware keyboards could be achieved for touch screen smartphones.
Chang et al. [3] proposed a graphical password interface with enlarged virtual keys
for improved keystroke dynamics utility and authentication accuracy. They also exam-
ined the use of finger pressure features to enhance the authentication scheme. They
demonstrated that, by fusing pressure features with keystroke timing features, they
reduced the EER of the keystroke dynamics based authentication system from 12.2%
to 6.9%, on a dataset containing 100 subjects and 20 imposters. Trojahn et al. [28]
investigated combinations of keystroke time features for keystroke dynamics authenti-
cation for mobile devices. They also explored additional touch features such as touch
pressure and the size of the key touch for enhanced keystroke dynamics. They found
that the additional touch features reduced more than 30% of the error of the timing
feature based keystroke authentication scheme using a dataset of 152 subjects.
Mobile devices are typically embedded with inertial sensors including accelerometers

and gyroscopes which record the motion of the device. These motion characteristics
have been exploited to improve the accuracy of keystroke dynamics biometrics for
mobile devices. Ho [13] explored the use of accelerometer statistics, key tap size,
and key duration features to authenticate mobile device user during the login stage.
The study showed that accelerometer statistics performed the best among the three
feature types, while fusing the three feature types drastically improved the accuracy
when individual feature type was used. Giuffrida et al. [9] used motion measurements
from inertial sensors including accelerometer and gyroscopes to substantially boost
keystroke dynamics authentication performance on mobile phones. In another study,
[30] exploited four features extracted from sensors in touchscreen smartphones to fully
characterize the keystroke dynamics: accelerations during key pressing, the touching
pressure, touching area, and key hold and inter key time. Experiments conducted using
keystroke analysis on 4-digit and 8-digit PINs using a dataset containing more than
80 subjects yielded an EER of 3.65%. Trojahn et al. [28] fused keystroke dynamics
biometrics with gait characteristics from gyroscopes for continuous authentication on
mobile devices.
Keystroke dynamics biometrics for continuous mobile authentication has been in-

vestigated. Feng et al. [7] investigated mobile authentication for both the login and
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post login stages. They adopted text independent keystroke features, comprising of
keystroke time, tactile pressure from the capacitive touchscreen, with and without
haptic feedback. Decision tree, random forest, and Bayes Net classification methods
were used. Performance analysis on a dataset of 40 subjects indicated that adopt-
ing pressure information improved authentication accuracy, and typing with haptics
feedback boost the performance as well. Gascon et al. [8] performed a study on
continuous authentication of mobile device users using typing motion behavior on a
software keyboard. In addition to the typical keystroke time features, they also uti-
lized data from the accelerometer, gyroscope, and orientation sensor to characterize
the motion signature of the typing behavior. These features were collected for pre-
defined short text from 315 subjects. A 2376 dimensional feature vector encodes the
statistics and shape of motion measurements in both spatial and frequency domains,
was extracted to represent the typing motion behavior. SVM was then used to classify
these high dimensional feature vectors.

4.3 Advance in Mobile Keystroke Authentication
Algorithm

Although many purely discriminative model approaches exist, such as ANNs and SVMs,
models trained on a large amount of background users, without access to the real
imposter’s data at training time, they do not guarantee good generalization perfor-
mance to the unforeseen imposters. Recently, DNN was proposed in the machine
learning community as a generative-discriminative hybrid approach [12]. The unsuper-
vised generative training step grant the model with good generalization capabilities
to unforeseen test data, while the discriminate fine tune step endow the model with
super classification accuracy. It has achieved better performance than the ANNs and
SVMs approaches in many well defined tasks, including hand-writing digits recogni-
tion, speech and language modelling, and object recognition. Previously, we applied
DNN approach to the traditional PC based keystroke authentication using keystroke
timing features. Here we apply the DNN modeling approach to the problem of mobile
soft keystroke authentication, using the timing, taping, and inertial sensor features.
The following subsections detail the basic theory of this new approach.

4.3.1 Deep Neural Networks (DNN)
The deep neural networks are hierarchical probabilistic model that are composed of
input layer, hidden layers, and output layer. The input layer typically has the same
dimension as the input feature vector to be modelled. The units in the hidden layers
are called hidden variables. The hidden variables typically have binary values and are
called the feature detectors. These hidden layers can be trained one layer at a time in
a purely unsupervised fashion, with the output of lower level layer serve as input to the
higher level layer. The idea is to build a hierarchical generative model, so that each
higher level layer captures more complex non-linear features in the data. These pre-
trained two-layer generative models are then collapsed into a single multi-layer model
and serve as an initialized ANN for further discriminative parameter fine tuning. The
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Figure 4.1: Restricted Boltzmann Machine.

dimension of the output layer typically equals the number of classes the classifier tries
to resolve.
The pre-training of a generative model is important for the generalization capability

of the final model. It also facilitates the fine tuning of the ANN, i.e. providing a good
start point. It is well known that ANN is sensitive to the model parameter initialization
and can easily fall to local optimal. The DNN pre-train not only avoids the random
initialization of ANN parameters, but also significantly speeds up the ANN training
process.

4.3.1.1 Pre-Train of DNN

The first step to build a DNN is to perform a layer-wise unsupervised training of
Restricted Boltzmann Machines (RBMs). A RBM is one type of Markov random field
that has two layers, a visible layer and a hidden layer. The units in the visible layers
(v), are connected to all units in the hidden layer (h) with associated weights W.
Note there is no connection within each layer. A simple RBM with four input units
and three hidden units is illustrated in Fig.(4.1).
The units in the visual layer can be real value, integer, or binary, depending on the

type of input data to be modelled. The hidden units are typically binary stochastic
variables, i.e, h ∈ {0, 1}. The Gaussian RBM is chosen for the first layer of RBM
to model the real values of the keystroke features. The value of input and hidden
variable, {v, h}, defines the state of the machine and the energy of the state, E, is
defined as

E (v, h; θ) =
D∑

i=1

(vi − bi)2

2σ2
i

−
D∑

i=1

F∑
j=1

Wij
vihj
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−
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where θ = {W,a, b, σ} are parameters specifying the RBM [25]. D is the number
of input units, which is equal to the keystroke feature dimension. F is a user defined
parameter specifying the number of hidden units, a is a weight vector for the hidden
units, while b and σ are bias and variance parameters for the input layer. The value of
F specifies the capacity of the model. It depends on the data complexity and amount
of data available to train the parameters. It is task specific and typically not a very
sensitive parameter.
The binary output of the first layer Gaussian RBM further serves as input for higher

level RBMs to capture more complex non-linear structure embedded in the data. This
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process is also known as automatic feature engineering. Higher level RBMs in the
hierarchical generative are all defined as binary RBMs, i.e., both the visible and hidden
layers contains only binary units. Their energy functions are defined as

E (v, h; θ) = −vTWh− bT v − aTh

= −
D∑

i=1

F∑
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Wijvihj −
D∑

i=1
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The RBMs are stochastic and the joint distribution of visible and hidden units is
defined by

P (v, h; θ) = exp (−E (v, h; θ))
z (θ) ,

where z (θ) is the normalization factor, known as partition function, and can be
defined as

z (θ) =
∑

v

∑
h

exp (−E (v, h; θ)) .

The likelihood of the training data is then specified as

P (v; θ) =
∑

h exp (−E (v, h; θ))
z (θ) .

However, the exact layer-wise maximum likelihood training of the RBM is intractable
(except some trivial cases with very small value of D and F ) as the computation takes
time that is exponential to the dimension of D and F . An approximate solution is
provided by a technique known as “Contrastive Divergence” [11].

4.3.1.2 Fine Tuning of DNN

The output of the unsupervised pre-train step is decks of RBMs, which can be stacked
together and be added with a final classification layer to form an initialized ANN.
This is conceptually illustrated in Fig.(4.2), where two RBMs are collapsed by sharing
the middle units and a final layer (with weight W3) is added to perform keystroke
classification. The parameters of the final classification layer can be trained the same
way as training a typical ANN with back-propagation algorithm. Like training a typical
ANN, there are many tricks to make the training faster while at the same time keeping
the training process converge and avoiding overfitting.
The DNN discriminative fine tuning solves a non-linear optimization problem. The

cost function can be minimum classification error or reconstruction error depending
on whether it solves a classification or code/compression problem. A popular method
to solve this problem is stochastic gradient descent. For large training data set, it is
more efficient to compute the derivatives on a small, random mini-batch of training
cases. In addition, the learning rate parameters, which can vary during the training
process, need to be chosen carefully to balance training speed and avoid divergence.
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Figure 4.2: Train DNN for keystroke dynamics authentication in two steps.
Left: unsupervised training of RBMs, Right: Convert RBMs into DNN.

To minimize the risk of model overfitting to the training data, many techniques are
found to be useful, including 1) the simplest and most effective method is to have as
much training data as possible; 2) Choose a model size with the right capacity; 3)
train many models on different subset of training data and apply model averaging; 4)
using cross-validation data set to monitor cross validation data error rate and stop the
training when the validation performance stop to improve; 5) injection noise to the
weight parameter during the training to enhance robustness; 6) Normalize the input
feature to have zero mean and maybe unit stand deviation; 7) Apply threshold to the
parameter to avoid some parameter getting to big; 8) introduces regularization term
to the optimizations function; 9) Apply drop out technique to randomly disable some
units during the training process [26].

4.4 Experiments

This section presents a study on a public available data set on mobile keystroke au-
thentication. The dataset was provided by Stanford University and was developed for
mobile devices to include timing and additional touching and accelerometer features.
Performance of various advanced user authentication algorithms will be compared on
this data set.
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4.4.1 Stanford TapDynamics mobile keystroke dataset [13]
The Stanford TapDynamics dataset recruited 55 subjects to input one out of five
randomly assigned PIN code on an Android phone. The recorded data includes the
duration of each key tap, the latency between each key tap, the size of each key tap,
and all accelerometer readings over the course of a login attempt. Each login consists
of five key taps. A total of 1704 data samples were recorded. The author preprocessed
the data and made the features publicly available. The feature set includes for each
sample: five features for duration, four features for latency, five features for tapping
size, and accelerometer features. Twenty-one accelerometer features are generated per
training example by computing various statistics over all accelerometer readings in a
login attempt. Specifically, the computed statistics are the mean, min, max, variance,
first quartile, second quartile, and third quartile for the x,y, and z components over
all accelerometer readings in a training example. Overall, each data sample consists
of thirty five features.

4.4.2 Apply Deep Learning to mobile keystroke authentication
We apply deep neural network, the best performing keystroke algorithm based on
evaluation on the CMU keystroke data, to this mobile keystroke authentication task.
To compare it with other techniques published on the same dataset, the experimental
setup is kept the same as in [13]:

1. For each PIN code, all data for users with the PIN are selected to form a subset
‘D’.

a) For each user in ‘D’, the first 15 sample are used as positive training set,
and the remaining 15 samples are used for positive training set.

b) The first 15 samples from all other users in ‘D’ became negative training
set, and the remaining 15 samples are used for negative training set.

c) For each user in ‘D’, training and test a classifier and compute average
FAR and FRR among all users in ‘D’ to get FAR and FRR for each PIN.

2. We compute the average FAR and FRR over five PINs to obtain FAR and FRR
for each classifier.

The Stanford study [13] compared four classifiers, including Manhattan distance, Ran-
dom forest, Gaussian discriminant analysis, and SVMs with linear kernel, among which
the SVM classifier performed the best on the dataset. In addition, the impact of each
sensor modality was studied by cumulatively removing sensor features and comparing
the FAR and FRR using the SVM methods. Table 4.1 summarizes the sensor impact
results based on the best SVM classifier. The baseline system used all the sensors and
the combined feature dimension is 35. This system achieved FAR and FRR at 4.4%
and 5.3%, respectively. When only the keystroke timing features are used, i.e, with
only 4 dimension timing feature, the FAR and FRR are dropped to 28.4% and 17.4%,
respectively.
We have applied the deep neural network (DNN) to the same problem and performed

the impact of sensor modality experiments as well. The input features were first subject
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Table 4.1: The impact of sensor modality using the SVM and DNN classifiers [13].

Feature Removed (cumulative) Used Feature Dimension SVM FAR SVM FRR DNN EER
Baseline (no feature removed) 35 4.4% 5.3% 2.8%
Accelerometer statistics 14 11.7% 12.6% 3.7%
Key Tap Sizes 9 17.8% 14.7% 4.0%
Key Tap Duration 4 28.4% 17.4% 5.0%

to mean and variance normalization. The DNN has real input layer with the same
dimension as input feature vectors. The middle binary layers have used dimension of
50 and 20 for all experiments. To avoid the tuning of FAR and FRR, we report the
EER (equal error rate) of the DNN approach here.
As one can see, the DNN approach performs drastically better than the previously

reported best performing SVM classifier for this mobile keystroke authentication task.
Again, the best performance is achieved via the fusion of all three sensor modalities.
However, when more sensor modalities are excluded, the performance of DNN method
drops much more gracefully. The performance achieved with timing only feature based
on DNN is comparable to SVM classifier when all sensors are utilized.

4.5 Discussion and future work
Advanced mobile technology provides a rich sensor environment to cope with the
new security challenges unforeseen by traditional office computing devices. Although
physiological biometrics, such as fingerprint, provides a highly accurate one time au-
thentication, it was shown to be easy to spoof. Mobile keystroke dynamics enables a
non-intrusive continuous authentication modality which has the potential to provide
a highly accurate and secure solution to overcome mobile identity challenges. Pilot
studies have shown that key taping pressure and accelerometer sensory data provide
additional useful signatures for mobile user authentication. Our study have shown
that recent advance in deep machine learning significantly improves mobile user au-
thentication accuracy. It is worth to note that current studies are often based on a
small pool of subjects and the testing scenarios are still quite simplified. Future work
in mobile keystroke authentication study should investigate its effectiveness on more
complex and realistic use cases and testing on a larger subject pool. In addition, other
sensor modalities, such as gyroscope and face image, provided by mobile device should
be considered for a comprehensive authentication solution for mobile security.
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