
CHAPTER 6

Using Genetic Algorithm and Wisdom of Artificial Crowds to
Find Hidden Data in DNA

Marc B. Beck, Ahmed H. Desoky, Eric C. Roucka, Patrick S. McClure
and Roman V. Yampolskiy

Recent advances in genetic engineering have allowed the insertion of artificial DNA
strands into the living cells of organisms. These advances made it possible to insert
information into a DNA sequence for the purpose of data storage, watermarking, or
communication of secret messages by using substitution ciphers and other methods.
While many algorithms have been developed to hide and insert messages into DNA
sequences, there are only few approaches of discovering such messages. The ability
to detect, extract, and decode messages from DNA is important for forensic data
collection and for data security. One of our goals is the development of a software
toolkit that employs a combination of several algorithms to decode a message written
in DNA symbols. Genetic Algorithms (GA) have traditionally not been successful
in solving substitution ciphers, but we have developed a new approach that uses a
GA in combination with the Wisdom of Artificial Crowds post processing Algorithm to

Marc B. Beck, Ahmed H. Desoky, Eric C. Roucka, Patrick S. McClure, Roman V. Yampolskiy
University of Louisville
Louisville/Kentucky, USA
e-mail: marc.beck@louisville.edu

Editors: C.W. Ahn, M. Ali, M. Pant, Embodying Intelligence in Multimedia Data Hiding
DOI: 10.15579/gcsr.vol5.ch6, GCSR Vol. 5, pp. 101-114, 2016
c©The authors; licensee Science Gate Publishing P.C. - CC BY-NC 4.0 International License

101

http://creativecommons.org/licenses/by-nc/4.0/

102 M.B. Beck et al.

overcome these limitations. Our approach is successful in breaking substitution ciphers
that encode messages in DNA. Results show that this approach delivers significantly
more accurate results than a dictionary approach or a GA by itself.

6.1 Introduction
Deoxyribonucleic acid (DNA) is a molecule carrying the hereditary information for
every living organism. DNA contains four different nucleotides distinguished by the
bases adenine (A), cytosine (C), guanine (G), and thymine (T) [35]. DNA has the
potential to store a vast amount of data over a significant length of time. Data can be
encoded using combinations of those four nucleotides within genomes that can range
to several billion bases in length [2].
Genomic sequences contain regions that code for genes that produce proteins con-

sisting of amino acids. The four base code of DNA is translated to the twenty base
code of amino acids using the genetic code, which was first discovered by Marshall
Nirenberg [24].
A codon refers to a sequence in a gene coding region of three nucleotides that

determines which amino acid will be produced next during protein synthesis. A total
of 43=64 unique codons are possible, given that there are four nucleotides. With
exception of the three STOP codons TAA, TAG, and TGA [8], each codon encodes
for one of 20 amino acids. This allows for degeneracy in the genetic code where
multiple codon sequences translate into the same amino acid. For the purpose of this
manuscript, we will refer to encoding patterns that encode alphanumeric characters of
messages as codeons in order to distinguish them from codons and avoid confusion.
One of the most important problems in espionage is how to store the obtained

information and transfer it out of the target country undetected. An unsuspicious cover
medium is needed, and DNA offers itself as such a cover medium. With the appropriate
knowledge and technology, a spy could have the information inserted into the DNA of
an organism, and send it out of the country as an unsuspicious biological sample. It is
possible to insert not only text, but also images and many other forms of digitizable
data into a DNA sequence. DNA could also be used by criminal organizations to hide
illegal information. These reasons motivated the undertaking of this project to develop
a set of forensic tools that can detect, extract, and decode information that has been
hidden inside a DNA sequence.

6.2 DNA as Storage Medium
DNA sequencing is becoming increasingly cheaper, faster, and more efficient [18],
and at the same time it has become possible to create artificial DNA sequences and
insert them into living organisms [14]. These developments make the use of DNA as
a stegomedium for concealing, storing, and transmitting messages more feasible. This
means that there will be an increasing need for forensic methods to extract and decode
such messages in the near future. Not very many such methods are in existence so
far.

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 103

Table 6.1: Research on data hiding in DNA (modified from [6]).

Researcher Year Coding Message Location Organism
Clelland et al. [10] 1999 Substitution June 6 invasion:

Normandy
Artificial Human

Brenner et al. [8] 1999 Comma code Not reported Bsp120I E.coli
Shimanovsky et al. [28] 2002 Binary to

RNA
01001000100100
0101011001001
1010011011101

Theoretical Theoretical

Wong et al. [36] 2003 Substitution Not reported Not reported Deinococcus
radiodurans

Arita and Ohashi [3] 2004 Arita “AO2KEIO1-F” ftsZ gene B. subtilis RIK8
Tanaka et al. [33] 2005 Substitution “MESSAGE” Artificial

sequence
Artificial DNA

strand
Yachie et al. [37] 2007 Keyboard

scan
“E=mc^2 1905!” metB and

proB
B.subtilis
BEST2136

Heider and Barnekow [19] 2007 DNA-Crypt “TB” Vam7
sequence

Saccharomyces
cerevisiae CG783

Jiao and Gouette [22] 2009 ASCII 8 bit
binary

“CODING” tatAD gene B. subtilis

Ailenberg and Rotstein [1] 2009 Improved
Huffman

Text: Lyrics “Mary
had a little lamb”

SacI/KpnI PBluescript based
plasmid

Ailenberg and Rotstein [1] 2009 Improved
Huffman

Music: Tune “Mary
had a little lamb”

SacI/KpnI PBluescript based
plasmid

Ailenberg and Rotstein [1] 2009 Improved
Huffman

Image: lamb SacI/KpnI PBluescript based
plasmid

Gibson et al. [14] 2010 Substitution Multiple messages Not reported Artificial bacterium
Mousa et al. [26] 2011 Contrast

mapping
Random numbers RSNn256728 Random Sequence

of Nucleotides
Church et al. [9] 2012 Binary to

DNA
The book

“Regenesis” (53,000
words)

Artificial Theoretical

Goldman et al. [15] 2013 Goldman Various files totaling
757,051 bytes

Artificial Theoretical

Bachelet [4] 2014 Binary Mona Lisa Not reported Mouse
Bachelet [4] 2014 Binary Entire content of

Wikipedia
Not reported Apple

DNA is being investigated by a number of independent researchers as an ultra-
compact medium for long-term data storage [9, 15, 36] (Table 6.1) and as a ste-
gomedium for hiding messages [22, 30]. Instead of representing a message as a se-
quence of ones and zeroes, it is expressed in DNA code as a series of As, Cs, Gs, and
Ts. Researchers have developed various algorithms for encoding a message in DNA
code and either disguising it as a novel DNA sequence or inserting it into an existing
one. It has been proven possible to insert such artificial DNA components containing
encoded information into the genomes of living organisms [3, 8, 10, 14, 19, 21, 22, 37].
The possibility to use the DNA of living organisms as a data storage medium was

demonstrated by Yachie et al. [37] in 2007, and Researchers at the J. Craig Venter
Institute (JCVI) created the first cell with a synthetic genome, which was capable of
reproduction [14]. They managed to insert four watermarks into their artificial genome
using a substitution cipher coding scheme. Using DNA as storage medium has many
advantages, such as long life, redundancy, and high density as stated by Bancroft et
al. [5].

104 M.B. Beck et al.

Figure 6.1: Message insertion.

6.3 Hiding/Finding Data in DNA
Since noncoding genomic regions might be involved in yet unknown regulations, it was
suggested by Arita et al. [3] to insert the message into the coding region of genes.
This can be accomplished by taking advantage of the redundancy of the genetic code.
In many cases these redundant, or synonymous, codons differ in their third position,
called the wobble base [21]. Therefore synonymous codons allow for the potential of
message encoding without interfering with the encoded amino acid at the nucleotide
level, as illustrated in Fig.(6.1).

6.3.1 Coding Schemes
Several existing coding schemes for encoding messages have been compared and de-
scribed in great detail by Beck et al. [6]. These coding schemes include two schemes
[10, 36] that in effect substitute each letter of the English alphabet, each number from
0-9, and a few special characters with a three letter codeon of DNA symbols. There
are two other coding schemes based on the Huffman code [20] and the frequency of
letters in the English language [29]. The first encodes only the 26 letters of the English
alphabet [30]. The second one is an improved version [1] that encodes all characters
on an English computer keyboard. Two other coding schemes are the alternating
code [30] and the comma code . The alternating code alternates between purines
(Cs and Gs) and pyrimidines (As and Ts) in the codeons that encode the characters.
The comma code uses one of the DNA symbols as a comma symbol to separate the

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 105

codeons. Those coding schemes are less efficient due to their longer codeons.
Furthermore, there are several coding schemes that use various methods to trans-

late a message into binary and use parity bits or other error correction methods before
translating the binary into DNA symbols. For Example, the DNA-Crypt coding scheme
developed by Heider and Barnekow [19] translates a message into a five bit sequence,
where one bit serves as parity bit to keep the respective number of ones and zeroes
odd. The other four bits are translated into nucleotides, with two bits per nucleotide.
This coding scheme employs the 8/4 Hamming-code and the WDH-code for error cor-
rection. The ASCII based coding scheme described by Jiao and Gouette [21] converts
each character in the message into its ASCII representation then converts the ASCII
code from decimal into binary. Finally, the binary is converted to DNA by replacing
00 with A, 01 with C, 10 with G, and 11 with T.

6.3.2 Solving Substitution Ciphers
In many cases, messages are encoded in DNA using substitution ciphers. For example,
the letter ‘a’ is substituted by the sequence ‘AAA’, the letter ‘b’ by ‘AAC’, and so on.
Several methods have been developed for breaking substitution ciphers. These include
probabilistic labeling [27], dictionary search [23], combinatorial optimization algorithms
[13], maximum likelihood estimator [16], Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ASO) [34], as well as various other algorithms [11, 17].
Since there are four nucleotides, a simple substitution cipher coding scheme with

a codeon length of three, which can encode 64 characters, can be generated in 64!
possible ways. And that is only if the same 64 characters are being used. For example,
one coding scheme can start with A=AAA, B=AAC, C=AAG, while another one could
be A=AGT, B=CCG, C=CTG, Brute force guessing which of the many permutations
has been used to encode the message would take an enormous amount of time and
would therefore not be feasible.

6.3.3 Dictionary Approach
Our DNA steganalysis software has two algorithms for solving simple substitution
ciphers. In those substitution ciphers, each letter of the English alphabet, numbers
from 0-9, and several special characters such as spaces, commas, and periods are
each substituted by a combination of three DNA bases. While normal programs for
attacking substitution ciphers search over the space of 26! possible keys, our program
has a search space of 64! possible keys. This program is capable of solving all possible
coding schemes based on substitution ciphers with a codon length of 3 and an alphabet
of 64 characters, including the ones developed by Clelland [10] and Wong [36], as well
as variations thereof.
The first algorithm uses a list of all the characters in the English alphabet and the

frequency of their occurrence in a reference corpus. This corpus contains 801,134 words
consisting of 4,899,952 characters, including spaces. The frequency of occurrence in
this corpus of the 64 most common characters was recorded. The most common
character is the space with 16.2%, followed by the letters E, T, and A with 9.7%,
7.2%, and 6.4%, respectively.

106 M.B. Beck et al.

The program will split the cipher text into strings of length 3 and determine the
frequency of occurrence of each codon in the cipher text. The program will then
assign the most frequent letter from our list to the most frequent codon in the cipher
text and so generate a lookup table. Using this lookup table, the program translates
the cipher text into the plaintext. Of course most of the plaintext is still nonsense.
After that, the program will split the plaintext into words, using an empty space as a
delimiter. It will then compare the words with a dictionary. The dictionary, which has
been created from the aforementioned corpus, consists of several lists of words; each
list contains words with a certain number of letters ranging from single letter words
(‘a’ and ‘I’) to fifteen letter words. If the word matches a word in the dictionary, it
will be left alone. If the word differs from a word in the dictionary by a certain number
of letters depending on the length of the word, the program will suggest replacing the
letters at that particular position by their counterparts in the correct word. For words
with a length of four letters or less, the program will only suggest words that differ
by one letter. Words that are five or six letters long will be checked for two letter
difference, words with seven or eight letters will be checked for three, and so on.
The program will keep track of which letter is suggested to be replaced by which

other letter and how many times. It will then switch the codons of the letter pair
that has been suggested for replacement the most often, translate the cipher text into
the plaintext with the updated lookup table and repeat checking the dictionary. With
each iteration the number of correct words increases. The program terminates when
the stop condition selected by the user is met. The possible stop conditions include
the following options:

• after a certain percentage of words is decoded correctly.

• after a certain number of iterations have been run.

• after a certain number of words.

• after user clicks the Stop button.

The Stop button is the default setting to prevent the program from running in an
infinite loop and can be clicked by the user at any time to terminate the decryption
program.
The algorithm follows the following rules:

• An incorrect letter cannot be replaced if it occurs at a different position in the
same word and is correct at the second location.

• A letter cannot be replaced if the suggested replacement letter occurs at a
different position in the same word and belongs there.

• A replacement word is to be discarded if another replacement is suggested that
requires switching fewer letters.

• A word that has a punctuation character at the end will be checked without the
punctuation character.

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 107

6.3.4 Genetic Algorithm and Wisdom of Artificial Crowds

In order to increase the accuracy with which shorter messages can be decoded we
began to search for alternative methods to the dictionary approach. One of the pro-
posed alternatives is to use a Genetic Algorithm (GA). A GA is a heuristic that is
commonly used in artificial intelligence to find useful solutions to search and optimiza-
tion problems. GAs are a subcategory of evolutionary algorithms which mimic natural
evolution using concepts such as inheritance, mutation, selection, and crossover. The
genetic algorithm contains a population of strings, referred to as chromosomes, which
represent candidate solutions. Over several generations (iterations of the algorithm),
these evolve from a usually randomly generated population to better solutions. The
fitness of every individual in the population is evaluated in each generation. Then mul-
tiple individuals are selected based on their fitness, are recombined and occasionally
randomly mutated to form a new population, which is then used in the next iteration
of the GA. The GA usually terminates when either a satisfactory fitness level has been
reached, or after a maximum number of generations has been created.
Spillman et al. [31] developed a GA for the purpose of solving substitution ciphers

and reported satisfying results. However, Delman [12], who conducted a study on
GAs for solving substitution ciphers, was unable to reproduce their results and after
testing several other GAs concluded GAs to be not suitable for this task. In order to
address these shortcomings we are combining our GA with the Wisdom of Artificial
Crowds (WoAC) [38] post processing algorithm. Yampolskiy et al. [38] developed
Wisdom of Artificial Crowds (WoAC) as a post processing algorithm for GA’s and
Swarm optimization algorithms. It is derived from the Wisdom of Crowds (WoC)
algorithm, which is based on the observation that groups are often smarter than the
smartest individual in them [32]. For the WoAC algorithm, an nxn occurrence matrix
is constructed. This matrix is used to accumulate the number of times each solution
appears. Each row number corresponds to a character while each column number
corresponds to the symbol it maps to, in this case letters to letters. The occurrence
matrix is a symmetric matrix and only the lower triangle is stored in order to save
memory. The best key for decoding the message is calculated using the function
below:

cij = 1 − I−1
aij

(b1, b2) (6.1)

where I−1
aij

(b1, b2) is the inverse regularized beta function with parameters b1 and
b2 both taking a value of at least 1 [38].
McClure [?] successfully uses a GA in combination with WoAC to attack simple

substitution ciphers. We began to modify this GA by increasing the alphabet size
from 26 to 64 characters by including numbers and special characters. Also instead
of letters substituted for letters we look for strings of DNA symbols substituted for
alphanumerical characters.

108 M.B. Beck et al.

6.4 Methodology
Both the dictionary approach and the GA with WoAC approach were tested with
two different sample messages of different lengths. The first has 202 words, 134 not
counting repetition. The second message has 51 words, of which 35 are unique. Both
messages have been encoded with the coding scheme developed by Clelland [10].
Our software package was written in Java 7 using Eclipse v.4.4.0. The computer

used for this experiment has an Intel Core i7 processor and 10 GB RAM and runs
Windows 7 Home Premium 64 bit.
The settings for the GA are as follows: 20 population members, 5000 generations,

and a mutation rate of 10%. The results of 10 runs of the GA were entered into the
WoAC. Then the results of the WoAC were used to initialize the GA for the next 10
runs, with their results entering into the WoAC again. For the shorter text the GA
was run with 1000 generations.
The population size in this approach is 20, with 18 members of the starting popula-

tion being initialized by creating a random permutation of the English alphabet. The
remaining two members were initialized by frequency analysis of the encoded string.
In each iteration, the best four members are determined with a fitness score using a
dictionary approach and selected as parents. 75% of the time the first and third mem-
bers are used as parents of the first child and the second and fourth members become
parents of the second child. The remaining 25% of the time, the best population
member is copied to create a child.
The crossover is performed by choosing a crossover point between 1 and 26 (the

number of characters) at random. All elements before the crossover point were copied
from one parent, and all elements after the crossover point, if they did not already
exist, were copied from the other parent. Elements that have not been filled in so far
are copied from the first parent in the same order as they occur there. The mutation
rate is 10% and the number of generations is 10,000.
To determine the fitness of each population member, McClure [25] implemented

a fitness function that penalizes based on the number of incorrectly spelled words.
Furthermore, the misspelling is weighted by the number of letters in the word, and
also there is a reward for mapping the letters “e”, ”t”, and “a” to the most common
characters in the string, since they are the most commonly used letters in the English
language [25].
The keys we produced with ten runs of the GA were fed into the WoAC algorithm as

shown in Fig.(6.2). Then we use the key obtained from WoAC as seed value to initialize
two out of twenty population members in another run of the GA. The remaining 18
population members are initialized at random.
In order to be able to work with 64 characters instead of 26 we counted the frequency

of occurrence of the 64 most common symbols and characters in our sample corpus and
adjusted the formula accordingly. Since we take spaces and punctuation into account,
our most common character is now the space with 16%, followed by the letters e, t,
and a with 9%, 7%, and 6%, respectively. Also, besides rewarding high percentage of
occurrence of the most frequent characters, we punish high percentage of occurrence
of the 14 least frequent characters. The dictionary used in both approaches contains
over 28,000 words.

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 109

Figure 6.2: Flow chart of GA/WoAC approach.

110 M.B. Beck et al.

Table 6.2: Results of decoding messages with the dictionary approach.

Decoded with dictionary approach
Coding scheme Words total Words correct Characters correct Time

Clelland 202 89% 76% 0.70 sec
Clelland 51 51% 52% 0.06 sec
Comma 202 99% 80% 0.80 sec
Comma 51 64% 42% 0.08sec

Alternating 202 99% 80% 0.90 sec
Alternating 51 58% 50% 0.07 sec

Table 6.3: Results of decoding messages with the GA/WoAC approach.

Decoded with Genetic Algorithm/ Wisdom of Artificial Crowds
Coding scheme Words total Words correct Characters correct Time

Clelland 202 100% 93% 5hrs 40 min
Clelland 51 89% 74% 7 min 6 sec
Comma 202 100% 96% 5 hrs 33 min
Comma 51 74% 50% 6 min 57 sec

Alternating 202 100% 96% 5hrs 48 min
Alternating 51 84% 53% 7 min 13 sec

6.5 Results
With Clelland’s coding scheme the dictionary approach deciphers the text almost cor-
rectly, the only errors are that comma and period are switched, and it mistakes the
letter J for the number 1. This happens most likely because the frequency of occur-
rence of the letter J is very similar to the frequency of occurrence of the number 1.
The same errors occur with the same message encoded in Wong’s coding scheme, but
here the program also puts a question mark in the place of an apostrophe. These
errors can easily be fixed by adding more rules, for example not to allow numbers in
the middle of a word.
The second, much shorter message cannot successfully be deciphered using the

dictionary approach. This message has 51 words, 35 of which are unique. Out of
those, only 13 words are decoded correctly.
The GA is able to decode the first sample message with 100% accuracy; however

each run takes an average of 32 minutes. The shorter message is decoded in 7 minutes
with 89% accuracy.
Table 6.4 shows the accuracy for each GA run compared to each other and to

the WoAC decoding the 202 word text encoded in Clelland’s coding scheme. It also
contains the results of the GA runs 11-20 which use the result from the WoAC as
seed. The end result at the very bottom of the table is obtained by using the WoAC
algorithm on runs 11-20. This table shows the results of the longer of the two texts.
Some of the GA runs actually produce worse results individually than the dictionary

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 111

Table 6.4: Comparing the separate GA runs to the WoAC results.

Iteration Words total Characters Correct
1 99% 90%
2 98% 86%
3 84% 79%
4 10% 34%
5 10% 34%
6 43% 59%
7 73% 69%
8 9% 28%
9 9% 0%
10 96% 79%

WoAC 99% 86%
11 99% 83%
12 99% 83%
13 98% 79%
14 100% 93%
15 100% 93%
16 100% 93%
17 100% 93%
18 99% 90%
19 100% 93%
20 100% 93%

End result 100% 93%

approach. If a word is correct, it means that that particular word can actually be found
in the dictionary.
As we can see in run 9, words that are in the dictionary can be decoded even when

all the characters are switched. Because of so many “correct” words, the key generated
has such a good error score that the algorithm gets stuck in a local maximum. Table
3 also shows how the GA being unable to work itself out of local maxima can result
in low success percentages, while at other times the success rates are very high. This
makes the GA by itself unreliable; hence Delman’s criticism for using GA’s to solve
substitution ciphers [12]. The table also shows the need for the WoAC to augment the
GA in order to produce reliable results. The results of the individual GA runs improve
even further when the result of the WoAC is used to seed the GA.

6.6 Further Research
Both approaches still have room for improvement and increased accuracy. The GA
could possibly be improved to converge faster by experimenting with different crossover,
mutation, and selection algorithms, or a combination thereof. It is also possible to

112 M.B. Beck et al.

make the GA more dynamic, for instance by changing the mutation rate when it has
gotten stuck in a local maximum.
It would be interesting to see how both algorithms perform when attempting to

decode messages that have been encrypted before being encoded. More experiments
will be run under different parameters in the future, and the knowledge gained from
these experiments will be used to further improve our software.
Codons can be in one of three reading frames. We are planning to improve our

message detection algorithm to be able to search for messages in all reading frames.
Furthermore, insertions and deletions can shift a message mid-stream and an algorithm
needs to be developed to take this into account.
Bharadwaj et al. [7] applied for a patent for software that would enable all 256

Extended ASCII characters to be defined in terms of DNA sequences. Therefore, our
DNA steganography toolkit could be expanded to be able to deal with alphabets of
more than 64 characters.
We have also written a program that creates a dictionary and calculates the fre-

quency of occurrence of characters from a sample corpus, allowing this program to
be easily modified by creating a dictionary and a frequency count based on a specific
topic.

6.7 Conclusion
This project aims at covering a variety of different approaches for DNA steganography.
The GA clearly takes several orders of magnitudes more time, but is able to decode
short messages at greater accuracy than the dictionary approach. Both methods com-
plement each other, while the dictionary approach is faster; the GA is more accurate
and also performs better at decoding shorter messages. Shorter messages need more
generations but take less time. The WoAC algorithm used in combination with mul-
tiple runs of the GA provides clearly improved results compared to the individual runs
of the GA by themselves. The end result is even better after using the WoAC results
as seed for the next 10 GA runs. Both algorithms are currently being improved further
and tested with a greater variety of messages, such as messages with a large amount of
numbers and special characters and messages that contain names and foreign words.
The key is to make this software toolkit as flexible as possible, so it can be adapted
in the future to deal with new coding schemes and new approaches to hide messages.

References
[1] M. Ailenberg and O. Rotstein. An improved Huffman coding method for archiving

text, images, and music characters in DNA. Biotechniques, 47(3):747–754, 2009.
[2] B. Anam, K. Sakib, Md.A. Hossain, and K. Dahal. Review on the advancements

of DNA cryptography. In International Conference on Software, Knowledge, In-
formation Management and Application, 2010.

[3] M. Arita and Y. Ohashi. Secret signatures inside genomic DNA. Biotechnology
Progress, 20(5):1605–1607, 2004.

Using Genetic Algorithm and Wisdom of Artificial Crowds ... 113

[4] I. Bachelet. Dr. ido bachelet talk on bionic technolo-
gies. http://personalitycafe.com/science-technology/
439362-dr-ido-bachelet-talk-bionic-technologies.html, 2015.
Personality Cafe.

[5] C. Bancroft, T. Bowler, B. Bloom, and C.T. Clelland. Long-term storage of
information in DNA. Science, 293(5536):1763–1765, 2001.

[6] M B. Beck, E.C. Rouchka, and R.V. Yampolskiy. Digital Forensics and Cyber
Crime, volume 114 of LNICST, chapter Finding data in DNA: computer forensic
investigation of living organisms, pages 204–219. Springer Berlin Heidelberg,
2013.

[7] L.M. Bharadwaj, A.K. Shukla, A.P. Bhondekar, R. Kumar, and R. P. Bajpai.
Method for storing information in DNA, 2005.

[8] S. Brenner, A.O.W. Stretton, and S. Kaplan. Genetic code: the ’nonsense’ triplets
for chain termination and their suppression. Nature, 206:994–998, 1965.

[9] G.M. Church, Y. Gao, and S. Kosuri. Next-generation digital information storage
in DNA. Science, 337(6102):p. 1628, 2012.

[10] C.T. Clelland, V. Risca, and C. Bancroft. Hiding messages in DNA microdots.
Nature, 399:533–534, 1999.

[11] F.H.C. Crick and L.E. Orgel. Directed panspermia. Icarus, 19(3):341–346, 1973.
[12] B. Delman. Genetic algorithms in cryptography. Master’s thesis, Computer Sci-

ence Department, Rochester Institute of Technology, USA, 2004.
[13] W.S. Forsyth and R. Safavi-Nani. Automated cryptanalysis of substitution ciphers.

Cryptologia, 17(4):407–418, 1993.
[14] D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.Y. Chuang, M.A. Algire, and

et al. Creation of a bacterial cell controlled by a chemically synthesized genome.
Science, 329(5987):52–56, 2010.

[15] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, and
E. Birney. Towards practical, high-capacity, low-maintenance information storage
in synthesized DNA. Nature, 494:77–80, 2013.

[16] G.W. Hart. To decode short cryptograms. Communications of the ACM,
37(9):102–108, 1994.

[17] S. Hasinoff. Solving substitution ciphers. Technical report, University of Toronto,
Canada, 2003.

[18] E.C. Hayden. The $1000 genome. Nature, 507(7492):294–295, 2014.
[19] D. Heider and A. Barnekow. DNA-based watermarks using the DNA-Crypt algo-

rithm. BMC Bioinformatics, 8:176, 2007.
[20] D.A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.
[21] S.-H. Jiao and R. Goutte. Code for encryption hiding data into genomic DNA of

living organisms. In 9th International Conference on Signal Processing (ICSP),
pages 2166–2169, 2008.

[22] S.-H. Jiao and R. Goutte. Hiding data in DNA of living organisms. Natural
Science, 1(3):181–184, 2009.

[23] M. Lucks. A constraint satisfaction algorithm for the automated decryption of
simple substitution ciphers. In Advances in Cryptology (CRYPTO), pages 132–
144, 1988.

http://personalitycafe.com/science-technology/439362-dr-ido-bachelet-talk-bionic-technologies.html
http://personalitycafe.com/science-technology/439362-dr-ido-bachelet-talk-bionic-technologies.html

114 M.B. Beck et al.

[24] R.G. Martin, J.H. Matthaei, O.W. Jones, and M.W. Nirenberg. Ribonucleotide
composition of the genetic code. Biochemical and Biophysical Research Commu-
nications, 6(6):410–414, 1962.

[25] P. McClure. Project 6: Genetic Algorithm with Wisdom of Artificial Crowds
for Homophonic Substitution Ciphers. Technical report, University of Louisville,
2012.

[26] H. Mousa, K. Moustafa, W. Abdel-Wahed, and M. Hadhoud. Data hiding based
on contrast mapping using DNA medium. The International Arab Journal of
Information Technology, 8(2):147–154, 2011.

[27] S. Peleg and A. Rosenfeld. Breaking substitution ciphers using a relaxation algo-
rithm. Communications of the ACM, 22(11):598–605, 1979.

[28] B. Shimanovsky, J. Feng, and M. Potkonjak. Information Hiding, volume 2578 of
LNCS, chapter Hiding Data in DNA, pages 373–386. Springer Berlin Heidelberg,
2003.

[29] S. Singh. The Code Book: The Evolution of Secrecy from Mary, Queen of Scots
to Quantum Cryptography. Doubleday, New York - USA, 1999.

[30] G.C. Smith, C.C. Fiddes, J.P. Hawkins, and J.P.L. Cox. Some possible codes for
encrypting data in DNA. Biotechnology Letters, 25(14):1125–1130, 2003.

[31] R. Spillman, M. Janssen, B. Nelson, and M. Kepner. Use of a genetic algorithm
in the cryptanalysis of simple substitution ciphers. CryptologiaS, 17(1):31–44,
1993.

[32] J. Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few
and How Collective Wisdom Shapes Business, Economies, Societies and Nations.
Doubleday, New York - USA, 2004.

[33] K. Tanaka, A. Okamoto, and I. Saito. Public-key system using DNA as a one-way
function for key distribution. Biosystems, 81(1):25–29, 2005.

[34] M.F. Uddin and A.M. Youssef. An artificial life technique for the cryptanalysis of
simple substitution ciphers. In Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 1582–1585, 2006.

[35] J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure
for deoxyribose nucleic acid. Nature, 171:737–738, 1953.

[36] P.C. Wong, K.-K. Wong, and H. Foote. Organic data memory using the DNA
approach. Communications of the ACM, 46(1):95–98, 2003.

[37] N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi, and M. Tomita. Alignment-
based approach for durable data storage into living organisms. Biotechnology
Progress, 23(2):501–505, 2007.

[38] R.V. Yampolskiy, L. Ashby, and L. Hassan. Wisdom of artificial crowds – a
metaheuristic algorithm for global optimization. Journal of Intelligent Learning
Systems and Applications, 4(2):98–107, 2011.

