
CHAPTER 2

Toward a Synergy of a Lattice Implication Algebra with
Fuzzy Lattice Reasoning – A Lattice Computing Approach

Yi Liu, Vassilis G. Kaburlasos, Anestis G. Hatzimichailidis and Yang Xu

Automated reasoning can be instrumental in real-world applications involving “in-
telligent” machines such as (semi-)autonomous vehicles as well as robots. From an
analytical point of view, reasoning consists of a series of inferences or, equivalently,
implications. In turn, an implication is a function which obtains values in a well-
defined set. For instance, in classical Boolean logic an implication obtains values in
the set {0, 1}, i.e. it is either true (1) or false (0); whereas, in narrow fuzzy logic an
implication obtains values in the specific complete mathematical lattice unit-interval,
symbolically [0, 1], i.e. it is partially true/false. A lattice implication algebra (LIA)
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assumes implication values in a general complete mathematical lattice toward enhanc-
ing the representation of ambiguity in reasoning. This work introduces a LIA with
implication values in a complete lattice of intervals on the real number axis. Since real
numbers stem from real-world measurements, this work sets a ground for real-world
applications of a LIA. We show that the aforementioned lattice of intervals includes all
the enabling mathematical tools for fuzzy lattice reasoning (FLR). It follows a capacity
to optimize, in principle, LIA-reasoning based on FLR as described in this work.

Keywords - Fuzzy lattice reasoning, lattice computing, lattice implication algebra.

2.1 Introduction
Reasoning [2, 15, 16, 17, 18, 45, 46, 47, 50, 51, 52] can be instrumental in real-world
applications that involve uncertainty including inaccuracies and incomplete /ambigu-
ous information. One of the main research directions of intelligent machine information
processing regards processing of disparate types of information. In the aforementioned
context, both the theory of uncertainty reasoning and its machine implementation are
interesting. Classical automated reasoning, based on “certain” information, is depend-
able. To render dependable as well reasoning based on “non certain” information, it is
necessary to establish a suitable algebraic logic system. Note that a number of logic
systems such as many-valued logic (including fuzzy logic and lattice-valued logic), non
monotonic logic, modal logic, probability logic and intuitionistic logic, all propose a
logic basis (different from one another) for reasoning based on uncertain information
[1, 3, 7, 10, 37, 38, 39, 49, 58, 62, 63, 65].
Uncertain information in a natural language is often represented in an ordered-

structure [4, 5, 6, 8, 13]. In particular, usually, researchers use the elements in a totally-
ordered set to represent uncertainty; for instance, in narrow fuzzy logic a number in the
closed interval [0, 1] is used. However, there is uncertain information, e.g. regarding
incomparability, which is not totally-ordered. Therefore, in order to establish formal
reasoning methods, novel methodologies should be sought in a suitable mathematical
framework, namely mathematical lattice theory as detailed below.
This chapter is organized as follows. Section 2.2 details related work regarding logic

and/or reasoning methods. Section 3 outlines basic lattice implication algebra (LIA)
theory. Section 4 summarizes fuzzy lattice reasoning (FLR). Section 5 introduces a
LIA on a complete lattice of Type-1 intervals amenable to FLR. Finally, section 6
concludes by summarizing our contribution and delineating future work.

2.2 Related Work
L.A. Zadeh introduced fuzzy logic in 1965 [71]. Ever since, scholars have focused
mainly on fuzzy linguistic variables as well as on their application in intelligent infor-
mation processing. The first publications in fuzzy set theory by Zadeh and Goguen
demonstrated the intention of the authors to generalize the classical notion of a set as
well as to accommodate fuzziness in the sense contained in a human language regard-
ing judgment, evaluation and decision-making. More specifically, Zadeh writes: “The
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notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case
of ordinary sets, but is more general than the latter and, potentially, may prove to have
a much wider scope of applicability, particularly in the fields of pattern classification
and information processing. Essentially, such a framework provides a natural way of
dealing with problems in which the source of imprecision is the absence of sharply
defined criteria of class membership rather than the presence of random variables”,
where “imprecision” here is meant as vagueness rather than as lack of knowledge about
the precise value of a parameter (as in tolerance analysis). Fuzzy set theory provides a
rigorous mathematical framework (there is nothing fuzzy about fuzzy set theory!) in
which vagueness can be rigorously studied with precision. It can also be considered as
a modeling language, well suited for situations in which fuzzy relations, criteria, and
phenomena exist. The acceptance of this theory grew slowly in the 1960s and in the
early 1970s. However, in the second half of the 1970s, the first successful practical
applications of fuzzy set theory in automatic control regarding heating systems as well
as cement factories boosted interest in this area. Furthermore, a successful applica-
tion in washing machines /video cameras /cranes /subway trains, especially in Japan,
boosted research in the 1980s. Note that around 4,000 publications existed in the year
1984, whereas in the year 2000 more than 30,000 publications had been reported. In
particular, fuzzy set theory developed along the following two lines:
(a) On the one hand, in mathematics, fuzzy set theory has been enhanced by novel

concepts ultimately including classical mathematical areas such as algebra, graph
theory, topology, etc. by generalizing (i.e., fuzzifying) them [19, 20, 21, 22, 23,
24, 25, 36, 40, 41, 42, 43, 44, 48, 54, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72,
73]. This development is still ongoing.

(b) On the other hand, in applications, fuzzy technology for modeling, data mining
etc. has been a viable alternative to classical modeling approaches.

In 1973, Zadeh proposed a definition for fuzzy controller thus paving the way for fuzzy
control. In 1974, Mamdani presented a fuzzy controller for controlling a boiler as well
as a steam engine. With the development of fuzzy control technology, researchers
paid attention to basic theoretical problems including logic, reasoning, implication
operators, etc. In the aforementioned context, the development of a theoretical basis
for uncertain information processing became a necessity.
Many-valued logic, alternatively called multi-logic or multiple-valued logic, is a

propositional calculus with more than two truth values. Multi-valued logic, that
is an extension of classical two-valued logic, is an important research direction of
non-classical logic. It has been argued that multi-valued logic can make machine
decision-making amenable to human thinking. In classical, “Aristotelian” logic there
are only two possible values, namely “true” and “false”, for any proposition. Clas-
sical, two-valued logic may be extended to n-valued logic for n > 2. In particular,
popular n-valued logics in the literature include the three-valued logic (developed by
Lukasiewicz and Kleene, which assumes the values “true”, “false”, and “unknown”),
the finite-valued (finitely-many valued) logic with more than three values, and the
infinite-valued (infinitely-many valued) logic including fuzzy logic as well as probabil-
ity logic. The first known logician who didn’t fully accept the law of excluded middle
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was the Greek Aristotle (who, ironically, is also considered to be the first classical
logician as well as the “father of logic”). Aristotle claimed that the laws of logic do
not all apply to future events (De Interpretatione, ch. IX), but he did not propose any
system of multi-valued logic to explain this isolated remark. Up to the 20th century,
logicians followed Aristotelian logic, which assumes the law of the excluded middle.
The idea of multi-valued logic was reconsidered in the 20th century. More specifically,
the Polish logician and philosopher Jan Lukasiewicz proposed systems of many-valued
logic in 1920, using a third value, namely “possible”, to deal with Aristotle’s paradox
of the sea battle. Meanwhile, the American mathematician, Emil L. Post in 1921 in-
dependently proposed n additional degrees of truth for n ≥ 2. Later, Jan Lukasiewicz
and Alfred Tarski jointly formulated a logic with n truth values, where n ≥ 2. Kurt
Gödel in 1932 showed that intuitionistic logic is not finitely-many valued, furthermore
he defined intermediate logic systems between classical logic and intuitionistic logic.
Many-valued logics constitute an interesting alternative to classical logic for model-

ing and reasoning. By allowing for additional truth values, they are able to represent
uncertainty and/or disagreement. In the aforementioned context, a variety of appli-
cations has been considered in databases, knowledge representation, machine learn-
ing, circuit design and elsewhere. The first step in many-valued logic was taken by
Lukasiewicz as well as by Post. More specifically, in 1920, Lukasiewicz introduced
a three-valued logic system, where the third truth value could represent “neutral”,
“undefined” or an intermediate state. The latter was the first formal system in many-
valued logic. Shortly later and independently, Post proposed a complete n-valued logic
system (different from Lukasiewicz’ logic system), which did not consider any underly-
ing philosophical problems but rather it proposed a formal many-valued logic system.
Afterwards, a number of many-valued logic systems was proposed with different philo-
sophical backgrounds as well as with different application fields. Some representative
works include: 3-valued logic systems introduced by a number of scholars; n-valued
logic systems introduced mainly by Gödel (1930), Kalmar (1934), Sobocinski (1936),
Slupecki (1938), Chang (1958), Rasiowa (1972), Cignoli (1982), Mangani (1973),
Komori (1978), Di Zenzo (1986), De Glas (1989); logic systems with truth values
in the closed interval [0, 1] introduced mainly by Zadeh, Lee and Chang, Rasiowa,
Gaines, Baldwin, Gottwald, Todt, Wu, Wang and other. In particular, in 1965, Zadeh
introduced the concept “fuzzy set” which is of momentous significance in the study of
non-classical logic. In 1967, Goguen extended the concept of fuzzy sets to L-fuzzy sets
in which membership obtains values in a partially ordered set instead of in a totally
ordered set such as [0, 1].
Goguen studied lattice-valued logic and further proposed the first lattice-valued logic

formal system based on complete lattice-ordered semigroups which initiated the study
of lattice-valued logic. Thereafter, a number of researchers including Rosser, Tur-
quette and Pavelka proposed further improvements on Goguen’s logic system – Note
that Pavelka’s work is the most typical one. In 1979, Pavelka incorporated internal
truth value in the language, established a fuzzy propositional logic system whose truth
value set is an enriched residuated lattice and proved several important results regard-
ing its axiomatizability; in particular, the followings axioms are most significant: (1)
Any propositional logic with L = [0, 1] and a continuous residuation operation (in
particular, Lukasiewicz’s implication) is axiomatizable, and (2) Any propositional logic
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in which L is a finite chain, is axiomatizable. Pavelka’s work is concerned mainly with
propositional fuzzy logic. Pavelka showed that the only natural way of formalizing
fuzzy logic for truth values in the unit interval [0, 1] is by the Lukasiewicz’s implication
operator or some isomorphic forms of it. Novak extended Pavelka’s work to first-
order fuzzy logic. Pavelka and Novak’s work provided a relative general framework for
lattice-valued logic system. Pavelka’s as well as Novak’s works have been influential
in fuzzy logic. For instance, a number of authors including Turunen, Esteva, Godo,
Hajek, Ying et al. have studied fuzzy logic in the light of Pavelka and Novak’s work
regarding many-valued logic based on a residuated lattice.
In the following we cite from the extensive literature regarding triangular norms

and conorms as possible truth-function of conjunction and disjunction, and the in-
duced truth-function for implication. Note that triangular norms were introduced in
the framework of probabilistic metric spaces and they are applied in several fields in-
cluding fuzzy set theory, fuzzy logics and their applications. Furthermore, residuated
many-valued logics are related to continuous t-norms which are used as truth functions
for the conjunction connective, and their residua as truth functions for the implica-
tion. Main examples are the Lukasiewicz, Gödel and Product logics, related to the
Lukasiewicz t-norm t(x, y) = max {0, x+ y−1}, Gödel t-norm t(x, y) = min {x, y}
and Product t-norm t(x, y) = xy, respectively. Rose and Rosser presented complete-
ness results for the Lukasiewicz logic, whereas Dummet presented results for the Gödel
logic. Later, the aforementioned three authors axiomatized the Product logic. Hajek
(1998) proposed the axiomatic system BL (i.e., Basic Logic) corresponding to a generic
continuous t-norm, where the Lukasiewicz, Gödel and Product logics are special cases.
Chang, Mundici, Belluce, Turunen, Hajek among others have studied many-valued
logic based on MV (i.e., Multi-Valued) algebras. From the logical viewpoint, fuzzy
logic can be regarded as a special case of many-valued or infinite-valued logic. A
many-valued propositional logic with truth values in the unit interval [0, 1] is often
called fuzzy logic (in a narrow sense), where the conjunction is usually implemented
by a triangular norm. There are different ways of implementing an implication. The
latter (implementation) combined with the different implementations of a triangular
norm results in a large collection of fuzzy logics with different semantics. For instance,
Dubois and Prade investigated the possibilistic logic, whereas Liau et al. introduced
a possibilistic residuated implication logic with applications for reasoning, where the
semantics of the proposed logic is uniformly based on possibility theory. Each logic
in the class is parameterized by a t-norm operation on [0, 1], whereas the degree of
implication between the possibilities of two formulas is parameterized explicitly by the
residuated implication with respect to the t-norm. Furthermore, t-norm extensions to
lattices have been considered [9, 14].
Another type of lattice-valued logic, namely quantum logic, emerged from the at-

tempts of Jordan, et al. toward providing an axiomatic foundation for quantum me-
chanics. In particular, quantum logic was defined based on orthomodular lattices of
closed convex subsets or closed linear subspaces in either a real or a complex Hilbert
space; in either case the lattices are non-Boolean. Quantum logic is more general
than Boolean logic since it does not require lattice distributivity. In fact, quantum
logic does not even require modularity. The uncountably infinite orthonormal bases of
a non-separable complex Hilbert space (H) can represent all conceivable experiments
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specifying a quantum mechanical system.
Boolean logic, fuzzy logic and quantum logic are typically studied in the context

of mathematical lattice theory. In particular, first, Boolean lattices are typically used
to study Boolean logic systems. Second, the narrow version of fuzzy logic developed
by Zadeh (1965) is typically studied using the totally-ordered, complete lattice [0, 1]
of real numbers equipped with its associated distributive lattice structure; moreover,
the general form of fuzzy logic allows for truth values in an arbitrary universal algebra.
Third, quantum logics are typically constructed so that the truth values of propositions
obtain values in an ortholattice.
Lattice-valued algebras of truth values have been used for theorem proving regarding

both m-valued Post logics and algorithmic logics. For instance, Belnap has proposed
a 4-valued logic that also uses the value “both” (i.e., “true and false”), to handle
inconsistent assertions in database systems; Salzer has studied operators and distri-
bution quantifiers in finite-valued logics based on semi-lattices; Hahnle has derived
tableau-style axiomatizations of distribution quantifiers using Birkhoff’s representa-
tion theorem for finite distributive lattices. Another type of lattice-value logic is based
on a bilattice. The latter is a generalization of the classical two-valued logic; more
specifically, a bilattice is a space of generalized truth values with two lattice orderings:
One ordering represents the degree of truth, whatever that means, whereas the other
ordering represents the degree of information or knowledge. Sofronie-Stokkermans has
studied, first, a finite-valued logic whose truth values constitute a distributive lattice
with certain type of operators and, second, automated theorem proving, where many
results are based on the Priestley representation theorem of distributive lattices. In
many cases the algebras of truth values associated to non-classical logic are of this
type, such as SH n-logics. The latter are propositional finite-valued logics based on
Symmetric Heyting algebras of order n, or SH n-logics for short; they focus on non-
classical logics having as algebraic models bounded distributive lattices with certain
types of operators. Automated theorem proving is also discussed. More specifically,
the idea is to use a Priestley-style representation for distributive lattices with operators
in order to define a class of Kripke-style models with respect to which the logic is both
sound and complete. If this class of Kripke-style models is elementary, it can then
be used for a translation to clause form. Satisfiability of the resulting clauses can be
checked by resolution. Zadeh has proposed a logic system based on a linguistic truth
values lattice. Liu has proposed a logic system based on a complete lattice with the
dividing element. The implication connective in Liu’s logic system is Kleene’s implica-
tion. In addition, its truth values lattice contains a special element, namely dividing
element, and some important results are given for [0, 1]. Wang has studied a logic
system based on certain class of algebras and reported some important results.
Xu and colleagues have proposed lattice implication algebra, or LIA for short, by

combining lattice and implication algebra in order to carry out uncertain information
processing including incomparability in reasoning [68]. Furthermore, based on LIA,
they have established lattice-valued propositional logic LP (X) [63], lattice-valued
first order logic LF (X) [65] as well as fuzzy propositional logic FP (X). In addition,
based on work by Goguen, Pavelka and Novak they have established gradational L-
type lattice-valued propositional logic system Lvpl [62] and first order logic system
Lvfl [58] toward representing both the difference of degree among attributes of each
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intermediate-variation state of objects and the incomparability of objects. Uncertainty
reasoning as well as resolution-based reasoning methods have been studied [53, 55,
56, 57, 59, 60, 61, 66, 67, 68, 69, 70] based on the aforementioned logic systems.
An alternative employment of mathematical lattice theory for fuzzy reasoning toward

both learning and generalization in classification applications has been inspired from a
study of the fuzzy adaptive resonance theory, or fuzzy-ART for short, neural network in
the early 1990s [26]. We remark that fuzzy-ART pursues learning by computing lattice-
ordered hyperboxes in the n-dimensional Euclidean space using two functions, namely
Weber (choice) function and match function, which calculate the degree of inclusion of
a hyperbox into another one. Later work [35] unified the aforementioned two functions
of fuzzy-ART; hence, a new function, namely inclusion measure, emerged denoted
by the Greek letter σ. Later, the applicability of an inclusion measure function was
extended, first, to non-overlapping hyperboxes and, second, to a general mathematical
lattice. In its extended capacity, a new name was sought instead of inclusion measure;
hence, the name fuzzy order (function) was proposed [30]. Any employment of a fuzzy
order function for decision-making is called fuzzy lattice reasoning, or FLR for short
[29, 32].
This work paves the way toward a synergy of FLR with LIA by introducing a specific

mathematical lattice that is the lattice of Type-1 intervals, amenable to both FLR
and LIA. The proposed synergy is presented in the context of Lattice Computing, or
LC for short – Recall that LC has been proposed as “an evolving collection of tools
and mathematical modeling methodologies with the capacity to process lattice-ordered
data per se including logic values, numbers, sets, symbols, graphs, etc.” [33]. Note
that preliminary descriptions of LC have been presented in [12, 27] as well as in [11],
whereas a recent presentation of LC is described in [34]. Preliminary connections of
FLR with lattice-valued logic have been reported elsewhere [28]. This work makes
explicit connections between FLR with LIA using an improved mathematical notation.

2.3 Lattice Implication Algebra
In this chapter, we define a lattice implication algebra (LIA) by combining lattice
and implication algebra and present some algebraic properties. Next, we introduce
elementary notions as well as results from lattice-valued logic with truth-value in LIAs.
The interested readers may refer to [68] for more details.

2.3.1 Definition, Examples and Basic Properties
Definition 1. Let (L,∨,∧, O, I) be a bounded lattice with an order-reversing involu-
tion ′, greatest element I, least element O, and let

→: L× L→ L

be a mapping. Then L = (L,∨,∧,′ ,→, O, I) is called a lattice implication algebra,
or LIA for short, if the following conditions hold for any x, y, z ∈ L:

(I1) x→ (y → z) = y → (x→ z) ;
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(I2) x→ x = I;
(I3) x→ y = y

′ → x
′ ;

(I4) Ifx→ y = y → x = I thenx = y;
(I5) (x→ y)→ y = (y → x)→ x;
(L1) (x ∨ y)→ z = (x→ z) ∧ (y → z) ;
(L2) (x ∧ y)→ z = (x→ z) ∨ (y → z) .

Example 1. Let L = [0, 1] and let operators ”∨,∧,′ ,→ ” be defined as follows, for
any x, y, z ∈ L:

x ∨ y = max {x, y} ,
x ∧ y = min {x, y} ,

x′ = 1− x, and
x→ y = min {x, 1− x+ y} .

Then ([0, 1] ,∨,∧,′ ,→, 0, 1) is a LIA, namely a Lukasiewicz implication algebra on
[0, 1].

Example 2. Let L = {ai | i = 1, 2, ..., n} and let operators “∨,∧,′ ,→” be defined as
follows, for any 1 ≤ j, k ≤ n :

aj ∨ ak = amax{i,k},

aj ∧ ak = amin{i,k},

(aj)
′

= an−j+1, and
aj → ak = amin{n−j+k,n}.

Then (L,∨,∧,′ ,→, a1, an) is a LIA, namely a Lukasiewicz implication algebra on a
finite chain.

Example 3 (Boolean algebra). Let (L,∨,∧,′ , O, I) be a Boolean lattice. For any
x, y ∈ L, define x→ y = x′ ∨ y. Then (L,∨,∧,′ ,→, O, I) is a LIA.

From Example 3 it follows that we can define a LIA on any Boolean algebra.

Theorem 1. Let (L,∨,∧,′ , O, I) be a LIA. Then, (L,∨,∧) is distributive lattice.

Theorem 2. Let (L,∨,∧,′ , O, I) be a LIA. Then, for any x, y, z ∈ L, the following
statements hold:

(1) If I → x = I then x = I;

(2) I → x = x, x→ O = x′;

(3) O → x = I, x→ I = I;

(4) (x→ y)→ y = x ∨ y;

(5) x ≤ y if and only if x→ y = I;

(6) ((x→ y)→ y)→ y = x→ y;
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(7) (x→ y)→ x′ = (y → x)→ y′;

(8) If x ≤ y then both x→ z ≥ y → z and z → x ≤ z → y;

(9) (x→ y)→ ((y → z)→ (x→ z)) = I.

Theorem 3. Let (L,∨,∧,′ , O, I) be a LIA. Then, for any x, y, z ∈ L, the following
statements hold:

(1) x ∧ y = ((x→ y)→ x′)′;

(2) (x→ y)→ y = (y → x)→ x;

(3) (x→ y) → (z → y) = z → (x ∨ y) = (y → x) → (z → x) = (z → x) ∨
(z → y);

(4) (x→ y) → (x→ z) = (x ∧ y) → z = (y → x) → (y → z) = (x→ z) ∨
(y → z);

(5) (x ∧ z)→ (y ∧ z) = (x ∧ z)→ y;

(6) ((x→ z) ∧ (z → y))→ (x→ y) = (x→ z) ∨ (z → y) ∨ (x→ y);

(7) (x→ (z → y))→ ((x→ z)→ (x→ y)) = x ∨ z ∨ ((x→ y) ∨ (z → y)).

In a LIA (L,∨,∧,′ ,→, O, I) two binary operations ⊗ and ⊕ are defined as follows, for
any x, y ∈ L:

x⊗ y = (x→ y′)
′

,

x⊕ y = x′ → y.

Theorem 4. In a LIA (L,∨,∧,′ ,→, O, I) for any x, y, z ∈ L, the following statements
hold:

(1) x⊗ y = y ⊗ x, x⊕ y = y ⊕ x;

(2) x⊗ y ≤ x ≤ x⊕ y, x⊗ y ≤ y ≤ x⊕ y;

(3) x→ (x⊗ y) = x′ ∨ y = (x⊕ y)→ y;

(4) (x→ y)⊗ x = x ∧ y;

(5) x→ (y → z) = (x⊗ y)→ z;

(6) x ≤ y → z if and only if x⊗ y ≤ z;

(7) x⊗ y = (x′ ⊕ y′)′, x⊕ y = (x′ ⊗ y′)′.

Theorem 5. If (L,∨,∧,′ ,→, O, I) is a LIA then (L,⊗,→, I) is a residuated lattice.

Theorem 6. Let L be a LIA.

(1) In semigroup (L,⊕), the unique element with inverse is O.



32 Y. Liu et al.

(2) In semigroup (L,⊗), the unique element with inverse is I.

Corollary 1. Suppose that L is a LIA and |L| ≥ 2, then neither (L,⊕) nor (L,⊗) is
a lattice-ordered group.

Theorem 7. Let L be a LIA, and a, b ∈ L. Then,

a⊗ b = ∧{x | a ≤ b→ x} .

2.3.2 Filter Theory of Lattice Implication Algebras
Definition 2. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. If

(1) I ∈ F , and

(2) for any x, y ∈ L, if x ∈ F , x → y ∈ F then y ∈ F , then F is called a filter of
L.

Theorem 8. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. Then, F is a filter of
L if and only if

(1) I ∈ F ,

(2) for any x, y ∈ F , it follows that x⊗ y ∈ F , and

(3) for any x, y ∈ L and x ≤ y, if x ∈ F then y ∈ F .

Remark 1. In Theorem 8 we can obtain (1) by (3). Therefore, it is easy to obtain the
following Proposition.

Proposition 1. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. Then, F is a filter
of L if and only if

(1) for any x, y ∈ F , it follows x⊗ y ∈ F , and

(2) for any x, y ∈ L and x ≤ y, if x ∈ F then y ∈ F .

Definition 3. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. If F satisfies the
following conditions:

(1) I ∈ F , and

(2) for any x, y, z ∈ L, x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F , then,
F is called an implicative filter of L.

Definition 4. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. If F satisfies the
following conditions:

(1) I ∈ F , and

(2) for any x, y, z ∈ L, x ∈ F and x → ((y → z)→ y) ∈ F imply y ∈ F , then, F
is called a positive implicative filter of L.
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Theorem 9. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. Then, F is filter of
L if and only if

(1) I ∈ F , and

(2) for any x, y ∈ F , z ∈ L, (x→ (y → z))→ z ∈ F .

Theorem 10. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F ⊆ L. Then, F is filter of
L if and only if for any x, y ∈ F , z ∈ L, x→ z ≥ y implies z ∈ F .

Proposition 2. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F is a positive implicative
filter of L. Then, for any x ∈ L, x′ → x ∈ F implies x ∈ F .

Theorem 11. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F be a filter of L. Then, F
is a positive implicative filter of L if and only if (x′ → x)→ x ∈ F , for any x ∈ L.

Theorem 12. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and F be a filter of L. Then,
the following conditions are equivalent:

(1) F is a positive implicative filter of L;

(2) for any x, y ∈ L, if (x→ y)→ x ∈ F then x ∈ F ;

(3) for any x ∈ L, x ∨ x′ ∈ F ;

(4) for any x, y, z ∈ L, if x→ (z′ → y) ∈ F and y → z ∈ F then x→ z ∈ F .

Remark 2. In a LIA L, F is an implicative filter of L if and only if F is a positive
implicative filter of L.

Definition 5. Let L be a LIA and P be a proper filter of L. Then, P is a prime filter
of L, if for any x, y ∈ L and x ∨ y ∈ P we have either x ∈ P or y ∈ P .

Definition 6. Let L be a LIA and P be a prime filter of L. Then, P is a minimal
prime filter of L, if P is the minimal element of the partial order sets composed by all
prime filters of L.

Remark 3. Any prime filter must contain a minimal prime filter in a LIA. In fact,
let P be a prime filter of L and let Σ = {Q | Q is a prime filter ofL andQ ⊆ P};
obviously, Σ 6= Ø and is a partially ordered set w.r.t. the conclusion relation of
set. For any chain {Qi}i∈I of Σ (I is an index set), it is straightforward to verify
that

⋂
i∈I {Qi} is a lower bound of this chain. Therefore, by Zorn Lemma, there is

minimal element in Σ, which (minimal element) is the minimal prime filter contained
in P .

Theorem 13. Let L be a LIA and F be a filter of L. Then, F is a prime filter of L,
if and only if F is a lattice prime filter of L.

Let F be a lattice filter of the LIA L = (L,∨,∧,′ ,→, O, I). For any a ∈ L, put
Fa = {x ∈ L | x→ a /∈ F} and K (F ) =

⋂
Fa.
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Theorem 14. Let L = (L,∨,∧,′ ,→, O, I) be a LIA. Then, P is minimal prime filter
of L if and only if P is minimal prime lattice filter of L.

Theorem 15. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and P be a minimal prime filter
of L. Then, P =

⋃
{Fa | a /∈ P}, where Fa = {x ∈ L | x ∨ a = I}.

Theorem 16. Let L = (L,∨,∧,′ ,→, O, I) be a LIA and P be a minimal prime filter of
L. Then, P = Fa (a /∈ P ) if and only if {Fb | b /∈ P} satisfies the maximal condition,
where Fb = {x ∈ L | x ∨ b = I}.

2.4 Fuzzy Lattice Reasoning
In a mathematical lattice (L,v), for any x, y ∈ L, it is either (x, y) ∈v or (x, y) /∈v;
in words, the relation “x v y” is either true or false, respectively. However, in practical
decision-making applications it is often useful to compute a degree of truth (in a narrow
fuzzy logic sense) of the relation “x v y”. Therefore, we introduce the notion “fuzzy
lattice” is order to fuzzify the (crisp) partial order relation in a lattice and extend it
to every pair (x, y) ∈ L× L as follows.

Definition 7. A fuzzy lattice is a triple (L,v,µ), where (L,v) is a (crisp) lattice and
(L× L, µ) is a conventional (or, equivalently, narrow) fuzzy set such that µ (x, y) =
1⇔ x v y.

We pursue a fuzzy lattice based on a “fuzzy order” function defined next.

Definition 8. Let (L,v) be a lattice. A function σ : L× L → [0, 1] is called fuzzy
order if and only if the following two properties hold.
C1. u v w ⇔ σ (u,w) = 1,
C2. u v w ⇒ σ (x, u) ≤ σ (x,w) (Consistency).

We remark that the notations σ (u,w) and σ (u v w) are used interchangeably. Any
employment of a fuzzy order function, e.g., in decision-making applications, is called
fuzzy lattice reasoning, or FLR for short. We point out that a fuzzy order function
σ supports two different modes of reasoning, namely Generalized Modus Ponens and
Reasoning by Analogy [29], as explained in the following. On the one hand, Generalized
Modus Ponens is implemented given both a rule a → c and an antecedent x v a;
it follows x → c. On the other hand, Reasoning by Analogy is implemented given
both a set of rules ai → ci, i ∈ {1, . . . , L} and an antecedent x such that x 66v ai,
i ∈ {1, . . . , L}. Then we conclude cJ such that J , arg maxi∈{1,...,L} σ (x v ai) .
An order function can be defined in a general lattice (L,v) based on a positive

valuation (real) function ν : L → R as explained below – Recall that a valuation is a
real function ν : L→ R that satisfies ν (x) +ν (y) = ν (x u y) +ν (x t y); a valuation
function is called monotone if and only if x v y ⇒ ν (x) ≤ ν (y), whereas it is called
positive if and only if x @ y ⇒ ν (x) < ν (y).
In practice, we often deal with a complete lattice (L,v) with least and greatest ele-

ments o and i, respectively; furthermore, due to the so-called “reasonable constraints”
(i) ν(o) = 0 and (ii) ν(i) < +∞, our interest here focuses on non-negative posi-
tive valuation functions ν : L → R+

0 . In conclusion, given a (non-negative) positive
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valuation function ν : L → R+
0 in a lattice (L,v), it turns out that both functions

sigma-join given by σt (x, u) = ν(u)
ν(xtu) , and sigma-meet given by σu (x, u) = ν(xuu)

ν(x) ,
are fuzzy orders.
Let (L,v) be a lattice with a fuzzy order σ : L× L→ [0, 1]; then, the triple (L,v, σ)

is a fuzzy lattice. That is, a fuzzy order (σ) in (L,v) fuzzifies a crisp lattice (L,v)
by transforming it to a fuzzy lattice; therefore, it enables the quantified comparison of
any two elements in (L,v).
Our interest here focuses on the partially ordered set (I,v) of conventional intervals

in a lattice (L,v), i.e.I = {[a, b]|a, b ∈ L and a v b}. It turns out that (I ∪ {Ø} ,⊆)
is a lattice, where the meet (∩) is defined as (1) x ∩Ø = Ø, ∀x ∈ (I ∪ {Ø}) and (2)
[a, b] ∩ [c, d] = [a t c, b u d] if a t c v b u d and [a, b] ∩ [c, d] = Ø if a t c 6v b u d,
for [a, b], [c, d] ∈ I; whereas, the join

( ·
∪
)
is defined as (1) x

·
∪Ø = x, ∀x ∈ (I ∪ {Ø})

and (2) [a, b]
·
∪ [c, d] = [a u c, b t d], for [a, b], [c, d] ∈ I.

Consider a complete lattice (L,v) with least and greatest elements o and i, respec-
tively. We represent the least element of lattice (I1 = I ∪ {Ø} ,v) as O = [i, o] = Ø.
The corresponding order relation [a, b] v [c, e] is defined as [a, b] v [c, e] ⇔ ”c v
a.AND.b v e”. An advantage of the representation O = [i, o] is that the latter
order relation is compatible with the equivalence [a, b] ⊆ [c, e] ⇔ c v a v b v e in
the partially ordered set (I,v) of conventional intervals. Another advantage of the
representation O = [i, o] is that the definition of both the meet and the join in lat-
tice (I1,v) is in accordance with the corresponding definitions in lattice (I ∪ {Ø} ,⊆),
because the meet (u) in lattice (I1,v) is computed by [a, b] u [c, e] = [a t c, b u e] if
a t c v b u e and [a, b] u [c, e] = [i, o] if a t c 6v b u e, whereas the join (t) in (I1,v)
is computed by [a, b] t [c, e] = [a u c, b t e]. An element of the set I1 = I ∪ {[i, o]}
is called Type-1 (T1) interval. In strict mathematical terms we say that the lattices
(I ∪ {Ø} ,v) and (I1,v) are isomorphic, symbolically (I ∪ {Ø} ,⊆) ≈ (I1,v).
Our intention is to define a fuzzy order function in lattice (I1,v) based on positive

valuation function ν : L→ R+
0 in lattice (L,v) as explained in the following. Assume

a dual isomorphic function θ : (L,v)∂ → (L,v). It turns out that (1) function
ν1 : L → R+

0 given by ν1(a, b) = ν(θ(a)) + ν(b) is a positive valuation function in
lattice (L,v)∂ × (L,v) =

(
L,v∂

)
× (L,v) = (L× L,w × v), and (2) lattice (I1,v)

is order embedded in lattice (L× L, w × v).
Two fuzzy order functions can be defined in lattice (L× L, w × v) as follows:

σu ([a, b] , [c, e]) =
{

1, for [a, b] = Ø
ν(θ(atc))+ν(bue)
ν(θ(a))+ν(b) , for [a, b] ⊃ Ø

, and

σt ([a, b] , [c, e]) =
{

1, for [a, b] t [c, e] = Ø
ν(θ(c))+ν(e)

ν(θ(auc))+ν(bte) , for [a, b] t [c, e] ⊃ Ø
.

Since lattice (I1,v) is embedded in lattice (L× L, w × v) both aforementioned
functions sigma-meet σu (., .) and sigma-join σt (., .) are also valid fuzzy orders in
lattice (I1,v).
The previous theory can be extended to the power-set 2L of a lattice (L,v) as

explained in the following [31]. In particular, we define a partial order v in 2L such
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that for U,W ∈ 2L, where U = {u1, . . . , uI} and W = {w1, . . . , wJ} , it is U v
W ⇔ (∀i ∈ {1, ..., I} ,∃j ∈ {1, ..., J} | ui v wj). In conclusion, the lattice

(
2L,v

)
emerges with U uW =

⋃
i,j

{ui u wj} and U tW =
⋃
i,j

{ui t wj}.

A subset S of L is called simplified if S includes, exclusively, incomparable elements
of L. Let π

(
2L) be the subset of the power-set 2L including all the simplified subsets

of L and only those. Our interest here focuses on the lattice
(
π
(
2L) ,v) because

every element of π
(
2L) maximizes a fuzzy order function due to the Consistency

property (see in Definition 8). In conclusion, we define a fuzzy order function σc :
π
(
2L)× π (2L)→ [0, 1] as follows.

Theorem 17. Let function σ : L× L → [0, 1] be a fuzzy order in a lattice (L,v).
Then, function σc : π

(
2L) × π

(
2L) → [0, 1] given by the convex combination

σc (U vW ) =
∑I
i=1 li max

j∈{1,...,J}
σ (ui v wj) is a fuzzy order.

We remark that by “convex combination” in Theorem 17 we mean a set {l1, . . . , lI}
of positive numbers such that l1 + . . . + lI = 1.

2.5 A Lattice Implication Algebra Amenable to Fuzzy
Lattice Reasoning

In this section we apply the general lattice theory presented in the previous section to
the complete lattice

(
R̄,≤

)
of extended real numbers, i.e. R̄ = ∪{+∞,−∞}, with

least and greatest elements −∞ and +∞, respectively.
Any strictly increasing function ν : R̄ → R+

0 is a positive valuation function on(
R̄,≤

)
. In particular, our interest is in positive valuation functions that satisfy the

aforementioned “reasonable constraints” (i) ν (−∞) = 0 and (ii) ν (+∞) < +∞.
Moreover, any strictly decreasing function is an eligible dual isomorphic function θ :(
R̄,≤

)∂ → (
R̄,≤

)
. In particular, our interest is in dual isomorphic functions such that

both θ (−∞) = +∞ and θ (+∞) = −∞ in order to utilize the whole domain of the
corresponding positive valuation function ν : R̄→ R+

0 .
Furthermore, our interest is in the complete lattice (I1,v) ≈ (I ∪ {Ø} ,⊆) of Type-

1 intervals with least and greatest elements denoted by O = [+∞,−∞] = Ø and
I = [−∞,+∞] = R̄, respectively. The corresponding partial order is defined as
[a, b] ⊆ [c, d] ⇔ (c ≤ a.AND.b ≤ d). The supremum operation, denoted by

⋃̇
, is

computed by [a, b]
⋃̇

[c, d] = [a ∧ c, b ∨ d]; whereas, the infimum operation, that is
the set intersection

⋂
, is computed by [a, b]

⋂
[c, d] = [a ∨ c, b ∧ d] if and only if

a ∨ c ≤ b ∧ d, otherwise [a, b]
⋂

[c, d] = /O.
In the following we will consider a measure space. The latter (measure space)

is defined as a triple (X,ΣX ,mΣX
), where X is a set, ΣX is a σ-algebra over X,

and mΣX
is a measure function over ΣX – Recall that a σ-algebra over a set X

is a collection of subsets of X that satisfies: (1) Ø ∈ ΣX , (2) A ∈ ΣX implies
(X −A) ∈ ΣX , and (3) for a collection of sets Ai ∈ ΣX indexed by a countable
indexing set D it follows

(⋃
i∈D Ai

)
∈ ΣX . In words, a σ-algebra includes the empty

set and it is closed under both complementation and countable unions. We remark that
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a measure is a set functionmΣX
: ΣX → R+

0 , which assigns a size to every “measurable
set” element in ΣX . Note that a measure mΣX

is required, by definition, to satisfy (1)
mΣX

(Ø) = 0, and (2) for any countable indexing set D, and any collection of pairwise
disjoint sets Ai ∈ ΣX indexed by i ∈ D, it holds mΣX

(⋃
i∈D Ai

)
=
∑
i∈DmΣX

(Ai).
In this work we assume a measure space (X,ΣX ,mΣX

) such that X = R̄, ΣX =
I∪{Ø}, furthermore a measuremΣX

over ΣX is defined asmΣX
([a, b]) = ν (b)−ν (a),

where ν : R̄→ R+
0 is a (strictly increasing) positive valuation function.

Let 2I be the power-set of I. Consider a simplified subset s(2I) of 2I defined as fol-
lows: s(2I) = {{δi} | δi ∈ I, i ∈ D, whereD is an index set, such that (a)m (δi) > 0
and (b) δi ∩ δj = Ø for i, j ∈ D with i 6= j}∪{Ø}. In words, an element of s(2I), other
than the empty set, is a set of intervals s = {..., δi, ..., δj , ...} such that (a) any in-
terval δi in s has a non-zero measure m (δi), and (b) not two intervals δi and δj
intersect. In other words, in a (subset) element of s(2I) (a) trivial intervals [a, a]
are excluded, and (b) two overlapping intervals, say [a, b] and [c, d], are replaced
by their least upper bound interval [a ∧ c, b ∨ d]. For example, even though the set
R = {[1, 2], [3, 5], [4, 7]} belongs to the power-set 2I1 , it does not belong to s(2I) be-
cause [3, 5]u [4, 7] = [3 ∨ 4, 5 ∧ 7] = [4, 5] 6= Ø; therefore, the set {[1, 2], [3, 5], [4, 7]}
is replaced by the set {[1, 2], [3, 7]}.
The set s(2I) is a lattice denoted by

(
s(2I),v

)
. In particular, lattice

(
s(2I),v

)
is

complete with greatest element I = {[−∞,+∞]} and least element O = Ø. The join
in lattice

(
s(2I),v

)
is defined as R t S =

⋃
i,j

{ri ∪ sj} ∈ s(2I). For example,

(a) {[1, 2], [3, 5]} t {[2, 3]} = {[1, 5]};

(b) {[1, 3], [5, 8]} t {[0, 1] , [4, 7]} = {[0, 3] , [4, 8]}.

The meet in lattice
(
s(2I),v

)
is defined as R u S =

⋃
{ri ∩ sj}. For example,

(a) {[1, 2], [3, 5]} u {[2, 3]} = {[2, 2] , [3, 3]} = Ø;

(b) {[1, 3], [5, 8]} u {[0, 1] , [4, 7]} = {[1, 1] , [5, 7]} = {[5, 7]}.

For R ∈ s(2I), the negation R′ is defined as the R′ = [−∞,+∞] \R. For example,

(a) {[2, 3]}′ = {[−∞, 2] , [3,+∞]};

(b) {[−1, 0] , [1, 2]}′ = {[−∞,−1] , [0, 1] , [2,+∞]}.

It turns out that
(
s(2I),v,t,u

)
is a distributive lattice. Furthermore,

(
s(2I),t,u,′ , O,

I) is a Boolean algebra. We define an implication (→) as follows: R→ S = R′ t S.
In conclusion, by Example 3, it follows that L =

(
s
(
2I) ,t,u,′ ,→, O, I) is a LIA.

2.6 Discussion and Conclusion
This work has paved the way toward a synergy of lattice implication algebra (LIA)
and fuzzy lattice reasoning (FLR) via the partially ordered set (I,⊆) of conventional
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intervals on the real axis. In conclusion, this work has shown that the simplified subset
s
(
2I) ⊆ 2I defines a LIA; furthermore s

(
2I) is amenable to FLR.

The practical advantage of (I,⊆) is that it ubiquitously emerges from measure-
ments in practice. Hence, using FLR it is possible to optimize LIA-reasoning, for
example by choosing the best truth value. Nevertheless, before using LIA L =(
s
(
2I) ,t,u,′ ,→, O, I) for reasoning we might need to view the world from a novel

perspective as delineated next.
An element of lattice

(
s
(
2I) ,v), that is a set of intervals, has to be treated as a

“truth value” by a LIA. In other words, we need to treat measurements as truth values.
For example, suppose that a temperature measurement is in the set {[16, 18], [19, 20]}
in centigrade (oC) temperate measurement unit; then, the set {[16, 18], [19, 20]} has
to be treated as a LIA truth value.
Future work plans include theoretical extensions driven by practical applications. In

particular, on the one hand, regarding theory, extensions of this work might also be
sought in the mathematical lattice of fuzzy numbers based on their (interval) a-cuts;
likewise extensions can be sought in the mathematical lattice of Intervals’ Numbers,
or INs for short [34]. On the other hand, regarding practical applications, machine
intelligence might be pursued, e.g. in mobile /humanoid robot applications, toward
planning by reasoning that accommodates uncertainty.
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