
CHAPTER 3

Relationships Among Several Fuzzy Measures

Yingfang Li, Xingxing He and Keyun Qin

In fuzzy set theory, similarity measure, divergence measure, subsethood measure
and fuzzy entropy are four basic concepts. They surface in many fields, such as image
processing, fuzzy neural networks, fuzzy reasoning, fuzzy control, and so on. The simi-
larity measure describes the degree of similarity of fuzzy sets A and B. The divergence
measure describes the degree of difference of fuzzy sets A and B. The subsethood
measure (also called inclusion measure) is a relation between fuzzy sets A and B,
which indicates the degree to which A is contained in B. The entropy of a fuzzy set
is the fuzziness of that set.
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Table 3.1: Several t-norms.

Name Symbols Formulae
Lukasiewicz TL max (x+ y − 1, 0)
Minimum TM min (x, y)
Product TP x · y

Table 3.2: Several t-conorms.

Name Symbols Formulae
Lukasiewicz SL min (x+ y, 1)
Maximum SM max (x, y)

Probabilistic sum SP x+ y − x · y

This chapter focuses on discussing relationships among these four fuzzy measures.
All of the fuzzy measures are discussed on discrete universes here; the cases for con-
tinuous universes can be researched similarly.

Keywords - Fuzzy measures, similarity measure, divergence measure, subsethood
measure, fuzzy entropy.

3.1 Generating Fuzzy Equivalencies
In fuzzy logic, to extend connectives of crisp sets to the fuzzy case, there may be
multiple alternative ways. The connectives of conjunction, disjunction and negation
can be formulated by means of the so-called t-norms, t-conorms and fuzzy negations,
respectively. Let us recall the concepts of some fuzzy connectives [21, 36].

Definition 1. An associative, commutative and increasing function T : [0, 1]2 → [0, 1]
is called a t-norm if T (x, 1) = x for all x ∈ [0, 1]. An associative, commutative and
increasing function S : [0, 1]2 → [0, 1] is called a t-conorm if S(x, 0) = x for all
x ∈ [0, 1].

Example 1. Tables 3.1 and 3.2 list several t-norms and t-conorms, respectively.

Definition 2. A function n : [0, 1]→ [0, 1] is called a fuzzy negation if it satisfies:

(n1) n (0) = 1 and n (1) = 0,

(n2) if x ≤ y, then n (x) ≥ n (y).

A fuzzy negation is said to be involutive if

(n3) (n (n (x))) = x for all x ∈ [0, 1].

Fuzzy negations that are involutive are called strong fuzzy negations.
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Definition 3. A continuous, strictly increasing function ϕ : [x, y]→ [x, y] with bound-
ary conditions ϕ(x) = x, ϕ(y) = y is called an automorphism of the interval [x, y].

Definition 4. A t-norm T is left-continuous if T (x, ∨
j∈J

yj) = ∨
j∈J

T (x, yj) holds for

an arbitrary index set J and for each x ∈ [0, 1] and (yj)j∈J ∈ [0, 1]J .

Definition 5. The residuation of a t-norm T is the function ~T : [0, 1]2 → [0, 1]
defined for all x, y ∈ [0, 1] by ~T (x, y) = sup {α ∈ [0, 1] |T (x, α) ≤ y }.

Lemma 1. Given a left-continuous t-norm T , we have

(1) ~T (x, y) is decreasing with respect to the first variable and increasing with respect
to the second variable,

(2) ~T (1, x) = x for all x ∈ [0, 1],

(3) x ≤ y implies ~T (x, y) = 1 for all x, y ∈ [0, 1].

Definition 6. The biresiduation of a t-norm T is the function T̃ : [0, 1]2 → [0, 1]
defined for all x, y ∈ [0, 1] by T̃ (x, y) = min(~T (x, y), ~T (y, x)). It is easy to prove that
T̃ satisfies the following properties:

(T̃1) T̃ (x, y) = T̃ (y, x) for all x, y ∈ [0, 1],

(T̃2) T̃ (x, x) = 1 for all x ∈ [0, 1],

(T̃3) T̃ (x, 1) = x for all x ∈ [0, 1],

(T̃4) for all x, y, z ∈ [0, 1], min(T̃ (x, y), T̃ (y, z)) ≥ T̃ (x, z) whenever x ≤ y ≤ z.

Aggregation operators (also called aggregation functions) are functions with special
properties [22]. In this chapter we only consider aggregation functions that take real
arguments from the unit interval and produce a real value in the unit interval.

Definition 7. A function M : [0, 1]n → [0, 1] is an aggregation operator if it satisfies
the following properties:

(M1) M(0, 0, . . . , 0︸ ︷︷ ︸
ntimes

) = 0,

(M2) M(1, 1, . . . , 1) = 1,

(M3) M(x, x, . . . , x) = x for all x ∈ [0, 1],

(M4) M is monotonically increasing in all of its arguments.

Example 2. As examples of aggregation operators we can take:

(1) The arithmetic mean: M(x1, x2, . . . , xn) = 1
n

∑n
i=1 xi.

(2) The convex linear combinations: M(x1, x2, . . . , xn) = λmin(x1, x2, . . . , xn) +
(1− λ) max(x1, x2, . . . , xn)with λ ∈ [0, 1].
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(3) M(x1, x2, . . . , xn) = max(x1,x2,...,xn)
max(x1,x2,...,xn)+max(1−x1,1−x2,...,1−xn) .

Fuzzy equivalence (also called equivalence function) is a fuzzy connective, which has
been used to formulate the equivalence of two fuzzy sets. In [18], Fodor and Roubens
defined equivalence as a binary operator on the unit interval. In [41], the authors briefly
introduced the fuzzy equivalence and proposed three examples of fuzzy equivalencies.
Fodor and Roubens [18] defined fuzzy equivalence as a binary function on the unit
interval in the following way.

Definition 8. A binary function E : [0, 1]2 → [0, 1] is called a fuzzy equivalence if it
satisfies the following properties:

(E1) E(x, y) = E(y, x) for all x, y ∈ [0, 1],

(E2) E(x, x) = 1 for all x ∈ [0, 1],

(E3) E(1, 0) = 0,

(E4) for all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then min(E(x, y), E(y, z)) ≥ E(x, z).

Some potential properties of fuzzy equivalencies could be considered [29]:

(E5) E(x, y) = 1 if and only if x = y for all x, y ∈ [0, 1],

(E6) E(x, y) = 0 if and only if min(x, y) = 0 and max(x, y) 6= 0 for all x, y ∈ [0, 1],

(E7) E(x, 1) = x for all x ∈ [0, 1],

(E8) E(x, y) = E(1− x, 1− y) for all x, y ∈ [0, 1],

(E9) E(x, 1− x) = 0 if and only if x = 0 or x = 1.

In [6], Bustince et al. presented the concept of restricted equivalence function, which
arises from the concept of fuzzy equivalence and some properties usually demanded
from the measures used for comparing images [7, 8]. The conditions for restricted
equivalence functions are stronger than those of fuzzy equivalencies.

Definition 9. A function REF : [0, 1]2 → [0, 1] is called a restricted equivalence
function if it satisfies the following properties:

(1) REF (x, y) = REF (y, x) for all x, y ∈ [0, 1],

(2) REF (x, y) = 1 if and only if x = y for all x, y ∈ [0, 1],

(3) REF (x, y) = 0 if and only if x = 1 and y = 0 or x = 0 and y = 1,

(4) REF (x, y) = REF (n(x), n(y)) for all x, y ∈ [0, 1], n being a strong fuzzy
negation,

(5) for all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then min(REF (x, y), REF (y, z)) ≥
REF (x, z).
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Table 3.3: Several t-norms with their residuations and biresiduations.

T ~T (x, y) ET (x, y)

TL ~TL(x, y) =
{

1− x+ y, x > y,
1, x ≤ y. ETL

(x, y) = 1− |x− y|

TM ~TM (x, y) =
{
y, x > y,
1, x ≤ y. ETM

(x, y) =
{

min(x, y), x 6= y,
1, x = y.

TP ~TP (x, y) = min(1, yx ) ETP
(x, y) = min(x,y)

max(x,y)

One of the most interesting issues related to fuzzy equivalencies is their generation
[29]. It is shown that the biresiduation of a t-norm is indeed a fuzzy equivalence by
T̃1− T̃4. By the composition of biresiduations and other fuzzy connectives, we obtain
several new fuzzy equivalencies. Let us begin with the fuzzy equivalencies based on
biresiduation.

Proposition 1. The biresiduation of a t-norm T is indeed a fuzzy equivalence.

Remark 1. (1) The biresiduation associated to a t-norm T is also notated by ET . This
will be the notation used in this chapter in order to stress the fact that the biresiduation
is a fuzzy equivalence. (2) As it is proved in [36], the fuzzy equivalence ET based
on the biresiduation of a t-norm T is also a T -indistinguishability operator on the
unit interval. Therefore, property E4 is reduced to the inequality: for all x ≤ y ≤ z,
T (ET (x, y), ET (y, z)) ≤ ET (x, z) ≤ min(ET (x, y), ET (y, z)).

Example 3. Table 3.3 lists three popular t-norms with their residuations and biresid-
uations. In order to avoid the denominator being zero, we set 0

0 = 1.

By the composition of biresiduations and other fuzzy connectives, we obtain several
new fuzzy equivalencies.

Proposition 2. Let ϕ be an automorphism of the unit interval and E be a fuzzy
equivalence. The functionEϕ : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

Eϕ(x, y) = E(ϕ(x), ϕ(y))

is a fuzzy equivalence.

Example 4. For all x ∈ [0, 1], we take the functions ϕ1(x) = 2xr

1+xr and ϕ2(x) = xs

where r > 0, s > 0. Considering the fuzzy equivalence ETL
, we obtain two fuzzy

equivalencies by Proposition 2

E1(x, y) = 1−
∣∣∣∣ 2xr

1 + xr
− 2yr

1 + yr

∣∣∣∣ , E2(x, y) = 1− |xs − ys| .

Proposition 3. Let ϕ be an automorphism of the unit interval and E be a fuzzy
equivalence. The function Eϕ : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

Eϕ(x, y) = ϕ(E(x, y))

is a fuzzy equivalence.
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Example 5. Considering the fuzzy equivalence ETP
and the automorphisms of the

unit interval ϕ3(x) = 2x
1+x , ϕ4(x) = 2x

1+x2 , ϕ5(x) = 2x2

1+x2 andϕ6(x) = x
2−x , we obtain

four fuzzy equivalencies by Proposition 3

E3(x, y) = 2 min(x, y)
x+ y

, E4(x, y) = 2xy
x2 + y2 ,

E5(x, y) = 2 min(x2, y2)
x2 + y2 , E6(x, y) = 1− |x− y|

1 + |x− y| .

Proposition 4. Let n be a fuzzy negation and E be a fuzzy equivalence. The function
En : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

En(x, y) = E(n(x), n(y))

is a fuzzy equivalence.

Example 6. Taking the fuzzy negation n(x) = 1−x and the fuzzy equivalencies ETP

and E3, we obtain two fuzzy equivalencies by Proposition 4

E7(x, y) = min(1− x, 1− y)
max(1− x, 1− y) , E8(x, y) = 2 min(1− x, 1− y)

2− x− y .

Lemma 2. Let T and S be a t-norm and a t-conorm, respectively. Suppose xi, yi, zi ∈
[0, 1] satisfying min(xi, yi) ≥ zi(i = 1, 2, . . . , n), then we have

(1) min(T (x1, x2), T (y1, y2)) ≥ T (z1, z2),

(2) min(S(x1, x2), S(y1, y2)) ≥ S(z1, z2),

(3) min(inf
i∈I

xi, inf
i∈I

yi) ≥ inf
i∈I

zi,

(4) min(sup
i∈I

xi, sup
i∈I

yi) ≥ sup
i∈I

zi.

Proposition 5. Let Ep and Eq be two fuzzy equivalencies and T be a t-norm. The
function ET : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

ET (x, y) = T (Ep(x, y), Eq(x, y))

is a fuzzy equivalence.

Proof. It is easy to see that ET satisfies E1, E2 and E3. We only prove E4 holds. Since
x ≤ y ≤ z implies that min(Ep(x, y), Ep(y, z)) ≥ Ep(x, z), min(Eq(x, y), Eq(y, z)) ≥
Eq(x, z), by Lemma 2 we have min(T (Ep(x, y), Eq(x, y)), T (Ep(y, z), Eq(y, z))) ≥
T (Ep(x, z), Eq(x, z)). Thus we obtain that min(ET (x, y), ET (y, z)) ≥ ET (x, z) in
case x ≤ y ≤ z.

Example 7. Considering the fuzzy equivalencies ETP
and E7 and the t-norm TP , the

corresponding fuzzy equivalence defined as Proposition 5 can be expressed as

E9(x, y) = min(x(1− y), y(1− x))
max(x(1− y), y(1− x)) .

Similar to Proposition 5 we obtain the following three propositions.
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Proposition 6. Let Ep and Eq be two fuzzy equivalencies and S be a t-conorm. The
function ES : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1]by

ES(x, y) = S(Ep(x, y), Eq(x, y))

is a fuzzy equivalence.

Proposition 7. Let (Ei)i∈I be a family of fuzzy equivalencies. The function EI :
[0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

EI(x, y) = inf
i∈I

Ei(x, y)

is a fuzzy equivalence.

Proposition 8. Let (Ei)i∈I be a family of fuzzy equivalencies. The function ES :
[0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1] by

ES(x, y) = sup
i∈I

Ei(x, y)

is a fuzzy equivalence.

The following propositions show that some fuzzy equivalencies can be constructed
by the same formula.

Proposition 9. Suppose Eα is a function defined for all x, y ∈ [0, 1] by

Eα(x, y) = a− a |x− y|+ bmin(x, y)
a− (a− 1) |x− y|+ bmin(x, y) (3.1)

with a ≥ 0, b ≥ 0 and max(a, b) 6= 0, then Eα is a fuzzy equivalence.

Proof. It is easy to prove that Eα is a function from [0, 1]2 to [0, 1] satisfying E1, E2
and E3. We only prove E4 holds. For all x, y, z ∈ [0, 1], if x ≥ y ≥ z, then we have

Eα(x, y) = a− a(y − x) + bx

a− (a− 1)(y − x) + bx
,

Eα(y, z) = a− a(z − y) + by

a− (a− 1)(z − y) + by
,

Eα(x, z) = a− a(z − x) + bx

a− (a− 1)(z − x) + bx
.

Considering the following functions

f(t) = a− a(t− x) + bx

a− (a− 1)(t− x) + bx
,

g(m) = a− a(z −m) + bm

a− (a− 1)(z −m) + bm
,
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where t,m ∈ [0, 1] and t ≥ x, m ≤ z, then we have

f ′(t) = −a− bx
[a− (a− 1)(t− x) + bx]2

≤ 0,

g′(m) = a+ bz

[a− (a− 1)(z −m) + bm]2
≥ 0.

Therefore, we can conclude that f is decreasing with respect to t and g is increasing
with respect to m. Thus we have Eα(x, y) ≥ Eα(x, z) and Eα(y, z) ≥ Eα(x, z)
whenever x ≤ y ≤ z.

Remark 2. In Eq.(3.1), if a = 1
2 , b = 0, then we have

Eα(x, y) = 1− |x− y|
1 + |x− y| = E6(x, y).

If a = 1, b = 0, then we have

Eα(x, y) = 1− |x− y| = ETL
(x, y).

If a = 0, b = 1, then we have

Eα(x, y) = min(x, y)
max(x, y) = ETP

(x, y).

If a = 0, b = 2, then we have

Eα(x, y) = 2 min(x, y)
x+ y

= E3(x, y).

Proposition 10. Suppose Eβ is a function defined for all x, y ∈ [0, 1] by

Eβ(x, y) = a− a |x− y|+ bmin(1− x, 1− y)
a− (a− 1) |x− y|+ bmin(1− x, 1− y) (3.2)

with a ≥ 0, b ≥ 0 and max(a, b) 6= 0, then Eβ is a fuzzy equivalence.

Proof. It is shown that Eβ(x, y) = Eβ(1−x, 1− y) for all x, y ∈ [0, 1]. Since Eβ is a
fuzzy equivalence, by Proposition 4 we conclude that Eβ is a fuzzy equivalence.

Remark 3. In Eq.(3.2), if a = 0, b = 1, then we have

Eβ(x, y) = min(1− x, 1− y)
max(1− x, 1− y) = E7(x, y).

If a = 0, b = 2, then we have

Eβ(x, y) = 2 min(1− x, 1− y)
2− x− y = E8(x, y).

Lemma 3. Given a fuzzy equivalence E, for all x, y, z ∈ [0, 1] we have
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(1) E(max(x, z),max(y, z)) ≥ E(x, y),

(2) E(min(x, z),min(y, z)) ≥ E(x, y).

Proof. It is shown that there exist six permutations for x, y and z, that is, x ≥ y ≥ z,
x ≥ z ≥ y, z ≥ x ≥ y, z ≥ y ≥ x, y ≥ z ≥ x, y ≥ x ≥ z. It is enough
to consider the preceding three cases, because E is commutative. If x ≥ y ≥
z, then E(max(x, z),max(y, z)) = E(x, y), E(min(x, z),min(y, z)) = E(z, z) =
1 ≥ E(x, y). If x ≥ z ≥ y, then E(max(x, z),max(y, z)) = E(x, z) ≥ E(x, y),
E(min(x, z),min(y, z)) = E(z, y) ≥ E(x, y). If z ≥ x ≥ y, then E(max(x, z),max(y
, z)) = 1 ≥ E(x, y), E(min(x, z),min(y, z)) = E(x, y).

3.2 Generating Dissimilarity Functions
In [8], Bustince et al. presented the definition of restricted dissimilarity function which
arises from the concepts of dissimilarity and fuzzy equivalence. Then they constructed
divergence measures by aggregating restricted dissimilarity functions.

Definition 10. A function d : [0, 1]2 → [0, 1] is called a restricted dissimilarity function
if it satisfies the following properties:

(1) d(x, y) = d(y, x) for all x, y ∈ [0, 1],

(2) d(x, y) = 0 if and only if x = y for all x, y ∈ [0, 1],

(3) d(x, y) = 1 if and only if x = 0 and y = 1 or x = 1 and y = 0,

(4) for all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then max(d(x, y), d(y, z)) ≤ d(x, z).

In the following, we propose a more general concept called dissimilarity function [28].

Definition 11. A function d : [0, 1]2 → [0, 1] is called a dissimilarity function if it
satisfies the following properties:

(d1) d(x, y) = d(y, x) for all x, y ∈ [0, 1],

(d2) d(x, x) = 0 for all x ∈ [0, 1],

(d3) d(1, 0) = 1,

(d4) for all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then max(d(x, y), d(y, z)) ≤ d(x, z).

Remark 4. d4 expresses the transitivity of dissimilarity functions. It says that the
divergence between x and z exceeds that between x and y and that between y and z
if the order relation x ≤ y ≤ z holds. Let T be a t-norm and ET be the biresiduation
of T . Suppose S is the t-conorm which is dual to T . If we define dT as dT (x, y) =
1 − ET (x, y) for all x, y ∈ [0, 1], then it is proved that dT is a dissimilarity function.
According to the T -transitivity of ET , we have S(dT (x, y), dT (y, z)) ≥ dT (x, z) for
all x, y, z ∈ [0, 1]. Hence, d4 is reduced to the inequality: for all x ≤ y ≤ z,
max(dT (x, y), dT (y, z)) ≤ dT (x, z) ≤ S(dT (x, y), dT (y, z)).



52 Y. Li et al.

It is shown that every restricted dissimilarity function in the sense of Bustince [8] is a
dissimilarity function (the reciprocal is not true). Now we consider four further axioms
in terms of dissimilarity functions.

(d5) d(x, 1) = 1− x for all x ∈ [0, 1],

(d6) d(x, 0) = x for all x ∈ [0, 1],

(d7) d(x, y) = 0 if and only if x = y for all x, y ∈ [0, 1],

(d8) d(x, y) = d(1− x, 1− y) for all x, y ∈ [0, 1].

Proposition 11. Let n be a fuzzy negation and E be a fuzzy equivalence. Suppose
dn1 : [0, 1]2 → [0, 1] is a function defined for all x, y ∈ [0, 1] by

dn1(x, y) = n(E(x, y)).

Then dn1 is a dissimilarity function.

Proposition 12. Let n be a fuzzy negation and d be a dissimilarity function. Suppose
dn2 : [0, 1]2 → [0, 1] is a function defined for all x, y ∈ [0, 1] by

dn2(x, y) = d(n(x), n(y)).

Then dn2 is a dissimilarity function.

Remark 5. In Propositions 11 and 12, if n, E and d are respectively strong fuzzy
negations, restricted equivalence functions and restricted dissimilarity functions, then
the obtained dissimilarity functions are restricted dissimilarity functions.

Proposition 13. Let ϕ be an automorphism of the unit interval and d be a dissimilarity
function. Suppose dϕ1 : [0, 1]2 → [0, 1] is a function defined for all x, y ∈ [0, 1] by

dϕ1(x, y) = d(ϕ(x), ϕ(y)).

Then dϕ1 is a dissimilarity function.

Proposition 14. Let ϕ be an automorphism of the unit interval and let d be a
dissimilarity function. Suppose dϕ2 : [0, 1]2 → [0, 1] is a function defined for all
x, y ∈ [0, 1] by

dϕ2(x, y) = ϕ(d(x, y)).

Then dϕ2 is a dissimilarity function.

Proposition 15. Let ϕ be an automorphism of the unit interval and let d be a
dissimilarity function. Suppose dϕ3 : [0, 1]2 → [0, 1] is a function defined for all
x, y ∈ [0, 1] by

dϕ3(x, y) = ϕ−1(d(x, y)).

Then dϕ3 is a dissimilarity function.
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Example 8. Let us take ϕ1 and ϕ2 in Propositions 13 and 15, respectively. Let
d1(x, y) = |x−y| for all x, y ∈ [0, 1]. By Propositions 13 and 15, we have dϕ3(x, y) =
ϕ2
−1(|ϕ1(x)− ϕ1(y)|), which is a restricted dissimilarity function presented in Propo-

sition 2 of [8].

Proposition 16. Let d be a dissimilarity function and E be a fuzzy equivalence.
Suppose d′ : [0, 1]2 → [0, 1] is a function defined for all x, y ∈ [0, 1] by

d′ (x, y) = d (x, y)
d (x, y) + E (x, y) .

Then d′ is a dissimilarity function.

Proof. It is easy to prove that d′ is a function from [0, 1]2 to [0, 1] satisfying d1, d2 and
d3. We only prove that d′ satisfies d4. For all x, y, z ∈ [0, 1] satisfyingx ≤ y ≤ z, if
d′ (x, y) = 0, then d′ (x, y) ≤ d′ (x, z). If d′ (x, y) 6= 0, then we have d′ (x, z) 6= 0.
Therefore, we have

1
d′ (x, y) = 1 + E (x, y)

d (x, y) ,
1

d′ (x, z) = 1 + E (x, z)
d (x, z) .

Since x ≤ y ≤ z implies E(x, y) ≥ E(x, z) and d(x, y) ≤ d(x, z), we have 1 +
E(x, y)
d(x, y) ≥ 1 + E(x, z)

d(x, z) . Therefore, we obtain that d′ (x, y) ≤ d′ (x, z). The case of
d′ (y, z) ≤ d′ (x, z) can be proved similarly.

Proposition 17. Given a dissimilarity function d, for all x, y ∈ [0, 1], if
∣∣x− 1

2
∣∣ ≥∣∣y − 1

2
∣∣, then we have d(x, 1− x) ≥ d(y, 1− y).

Proof. If
∣∣x− 1

2
∣∣ ≥ ∣∣y − 1

2
∣∣, then we obtain four permutations for x, y, 1− x, 1− y,

i.e., x ≥ y ≥ 1
2 ≥ 1−y ≥ 1−x, x ≥ 1−y ≥ 1

2 ≥ y ≥ 1−x, 1−x ≥ y ≥ 1
2 ≥ 1−y ≥ x,

1− x ≥ 1− y ≥ 1
2 ≥ y ≥ x. It is easy to see that d(x, 1− x) ≥ d(y, 1− y) for these

four cases.

Proposition 18. Given a dissimilarity function d, for all x, y, z ∈ [0, 1] we have:

(1) d(max(x, z),max(y, z)) ≤ d(x, y),

(2) d(min(x, z),min(y, z)) ≤ d(x, y).

Proof. Let En(x, y) = 1− d(x, y) for all x, y ∈ [0, 1], then En is a fuzzy equivalence.
Thus the proof is immediate by Lemma 3.

The following example shows that Lemma 3 and Proposition 18 may not hold for
arbitrary t-norm or t-conorm.

Example 9. Let E = E2 and T (x, y) = xy for all x, y ∈ [0, 1]. Suppose x0 6= y0
and 0 < z0 < 1, we have T (x0, z0) 6= T (y0, z0). Therefore, we have E(T (x0, z0),
T (y0, z0)) = min(T (x0, z0), T (y0, z0)) = min(x0z0, y0z0)< min(x0, y0) = E(x0, y0).
Let E = E6 and S(x, y) = min(x + y, 1) for all x, y ∈ [0, 1]. Let x1 = 0.6,
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y1 = 0.2, z1 = 0.1, then we have S(x1, z1) = 0.7, S(y1, z1) = 0.3. There-
fore, E(S(x1, z1), S(y1, z1)) = E(0.7, 0.3) = 0.3 and E(x1, y1) = 0.4. Thus
E(S(x1, z1), S(y1, z1)) < E(x1, y1). This proves that E(T (x, z), T (y, z)) ≥ E(x, y)
and E(S(x, z), S(y, z)) ≥ E(x, y) may not hold for any other t-norm or t-conorm
that differ from min and max. If we take d(x, y) = 1 − E(x, y) for all x, y ∈ [0, 1],
then we can prove that d(T (x, z), T (y, z)) ≤ d(x, y) and d(S(x, z), S(y, z)) ≤ d(x, y)
may not hold for any other t-norm or t-conorm that differ from min and max.

Proposition 19. Given a dissimilarity function d, for all x, x′
, y, y

′ ∈ [0, 1] we have:

(1) d(max(x, y),max(x′
, y

′)) ≤ max(d(x, x′), d(y, y′)),

(2) d(min(x, y),min(x′
, y

′)) ≤ min(d(x, x′), d(y, y′)).

Proof. Let us denote d(max(x, y),max(x′
, y

′)) and d(min(x, y),min(x′
, y

′)) by ∆1
and ∆2, respectively. If x ≥ y and x′ ≥ y

′ , then ∆1 = d(x, x′), ∆2 = d(y, y′). If
x ≤ y and x′ ≤ y

′ , then ∆1 = d(y, y′), ∆2 = d(x, x′). If x ≥ y and x′ ≤ y
′ , then

six subcases should be considered, i.e., x ≥ y ≥ y
′ ≥ x

′ , x ≥ y
′ ≥ y ≥ x

′ , x ≥ y
′ ≥

x
′ ≥ y, y′ ≥ x ≥ x

′ ≥ y, y′ ≥ x
′ ≥ x ≥ y, y′ ≥ x ≥ y ≥ x

′ . It is shown that
∆1 = d(x, y′) ≤ max(d(x, x′), d(y, y′)) and ∆2 = d(y, x′) ≤ max(d(x, x′), d(y, y′))
in these six subcases. The case of x ≤ y and x′ ≥ y′ can be proved similarly.

3.3 Fuzzy Measures for the Comparison of Fuzzy
Sets: Similarity Measures and Divergence
Measures

In many fields of artificial intelligence, we need to compare the descriptions of objects.
This comparison is frequently achieved through a measure intended to determine to
which extent the descriptions have common points or differ from each other. In some
occasions the comparison of fuzzy sets is done by quantifying the degree of equality
or similarity between them, but in other cases we need to compare fuzzy sets by
quantifying the degree of inequality or difference between them. Therefore, similarity
measure and divergence measure are two basic fuzzy measures for the comparison of
fuzzy sets.
The concept of similarity plays an essential role in human cognition because we

often encounter situations where we have to distinguish between similar groups in
day-to-day life. In fuzzy neural network, it is a common case to rule matching. This
approach employs a similarity measure to determine whether a rule should be fired for
a specific observation.
For example, in fuzzy pattern recognition, let A1, A2, . . . , An be n fuzzy sets on the

universal set X for n standard classes, F (X) the class of all fuzzy sets of X, Ac the
complement of A ∈ F (X). Given A ∈ F (X), we need to know which class A should
be identified with. To solve this problem, we need a similarity measure to measure
how close two fuzzy sets are. The measures used in order to make the comparison are
normally demanded to fulfill the following natural properties.
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(a) It is a non-negative and symmetric function of the two fuzzy sets to be compared.

(b) It becomes one when the two sets coincide.

(c) It becomes zero when the two sets are X and the empty set, respectively.

(d) It increases when the two sets become “more similar” in some sense.

Several similarity measures for practical use have been proposed in the literature [4,
5, 10, 16, 20, 25, 27, 29, 30, 34, 35, 37, 38, 43]. When we review to these similarity
measures, we find that most of them satisfy the above-mention conditions demanded
from similarity measures. Therefore, we can select them to compare the similarity of
two fuzzy sets in pattern recognition. Suppose A and B are two fuzzy sets, when
measuring their similarity degree, different similarity measures will obtain different
results, which result is the best choice of reflecting the intuitive closeness of those two
fuzzy sets should be considered. Therefore, it is necessary to find more new similarity
measures and give a deep comparison with other proposals in the literature.
Note that the similarity measures proposed and used in the literature are classified

into three categories: (1) Distance based measures, (2) Set-theoretic based mea-
sures and (3) Implications based measures. However, there does not exist a unifying
construction method for similarity measures. Section 3.3.1 will give two manners of
generating similarity measures of Wang [38] from fuzzy equivalencies. One is by ag-
gregating fuzzy equivalencies. The other is by reconstructing two formulae of fuzzy
equivalencies. We will see from some examples that the similarity measures based on
fuzzy equivalencies will serve as a very powerful tool for the calculation of similarity
between fuzzy sets. They are general in the sense that by using different fuzzy equiv-
alencies one gets the distance and the set-theoretic, as well as the implications based
similarity measures designed in the literature.
In fuzzy set theory, several ways of measuring the difference between fuzzy sets by

means of some functions have been proposed. It should be mentioned here that in
some references these functions are called distance measures [3, 8, 15, 26, 28, 43],
in some references these functions are called dissimilarity measures [4, 12], but in
other references these functions are called divergence measures [1, 11, 32, 33]. The
first axiomatic definition for distance measure was proposed by Liu in [43], where four
axioms for distance measure were given. On the basis of exponential operation, Fan
and Xie [15] defined a new distance measure. Bloch [3] classified distance measures
into four categories through their construction approaches. Almost all the distance
measures proposed in the literature can be classified into these four categories. In
[4], Bouchon-Meunier et al. defined a M -measure of dissimilarity between fuzzy sets.
This dissimilarity measure is indeed a distance measure in the sense of Liu [43] in case
it is symmetrical and satisfies the triangular inequality. Based on logarithm operation,
Bhandari and Pal [2] defined a divergence measure between fuzzy sets. In [32], Montes
et al. introduced a new axiomatic definition for divergence measure. Their approach
is based on three axioms modeling the minimal requirements for a function that tries
to measure the separation or difference between fuzzy sets. In this chapter, we will
call all functions measuring the difference between fuzzy sets divergence measures.
Based on the above-mentioned definitions of divergence measure, it is possible to

define measures of divergence between fuzzy sets. When measuring the divergence
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degree between fuzzy sets, different divergence measures will obtain different results,
which result is the best choice of reflecting the intuitive difference between fuzzy
sets should be considered. Thus it is necessary to find some ways to construct more
divergence measures and then compare them with other proposals in the literature.
Montes et al. [32, 33] proposed a way of constructing divergence measure. This kind
of divergence measure is also a divergence measure in the sense of Liu [43], based
on fuzzy union and intersection. Bustince et al. [8] normalized the definition of
divergence measure in the sense of Liu and presented a method to construct normal
divergence measures. Both of Montes’ and Bustince’s approaches to constructing
divergence measures are based on the use of restricted dissimilarity functions. Although
Montes’ and Bustince’s approaches can be used to construct numerous divergence
measures, including many existing ones, there still exist some kinds of divergence
measures that cannot be constructed by their approaches (e.g., divergence measures
based on the set theoretic approach [3]). Section 3.3.2 will propose two approaches to
constructing divergence measure in the sense of Liu and that in the sense of Montes.
The construction is based on the use of dissimilarity functions and fuzzy equivalencies.

3.3.1 Constructing Similarity Measures via Fuzzy Equivalencies
The concept of similarity measure has been quite studied in the fuzzy literature, like
for example those of Pappis and Karacapilidis [35], or that of Wang et al. [40], or that
of Liu [43]; however, the authors who work on this theme do not agree on the axioms
that must be demanded from such functions. According to the four natural properties
for similarity measures, we note that a reasonable similarity measure used for pattern
recognition must satisfy at least the following three conditions [38].

Definition 12. A function N : F (X) × F (X) → [0, 1] is called a similarity measure
if it satisfies the following properties:

(N1) N(X,∅) = 0 and N(A,A) =1 whenever A ∈ F (X),

(N2) N(A,B) = N(B,A) whenever A,B ∈ F (X),

(N3) for all A,B,C ∈ F (X), N(A,C) ≤ min(N(A,B), N(B,C)) whenever A ⊆
B ⊆ C.

This subsection will introduce two manners of constructing similarity measures.

Proposition 20. Given a discrete universe X = {x1, x2, ..., xn}. Let E be a fuzzy
equivalence, M be an aggregation operator. Suppose Nτ : F (X)× F (X)→ [0, 1] is
a function defined for all A,B ∈ F (X) by

Nτ (A,B) =
n

M
i=1

E(A(xi), B(xi)),

then Nτ is a similarity measure.

Proof. It is easy to see that the defined function Nτ satisfies N1 and N2. N3: Since
A ⊆ B ⊆ C impliesA(xi) ≤ B(xi) ≤ C(xi) for each xi ∈ X, by E4 we have
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min(E(A(xi), B(xi)), E(B(xi), C(xi))) ≥ E(A(xi), C(xi)). According to M4 we
have

min(
n

M
i=1

E(A(xi), B(xi)),
n

M
i=1

E(B(xi), C(xi))) ≥
n

M
i=1

E(A(xi), C(xi)).

Therefore, we have min(Nτ (A,B), Nτ (B,C)) ≥ Nτ (A,C).

Remark 6. In Proposition 20, if we take the arithmetic mean aggregation operatorM ,
then we have that for all A,B ∈ F (X)

Nτ (A,B) = 1
n

∑n

i=1
E(A(xi), B(xi)). (3.3)

Compared with other aggregation operators, the arithmetic mean one has the sig-
nificance of average. In Eq.(3.3), each element for A and B plays an equal role in the
similarity comparison. Thus we will discuss the similarity measures defined by Eq.(3.3)
in this chapter.

Example 10. Consider the fuzzy equivalencies ETL
, ETP

and E1-E9 with r = 1 and
s = 2 in E1 and E2, respectively. The corresponding similarity measures defined in
Eq.(3.3) can be expressed as

N1(A,B) = 1− 1
n

∑n

i=1
|A(xi)−B(xi)|,

N2(A,B) = 1
n

∑n

i=1

min(A(xi), B(xi))
max(A(xi), B(xi))

,

N3(A,B) = 1− 1
n

∑n

i=1

∣∣∣∣ 2A(xi)
1 +A(xi)

− 2B(xi)
1 +B(xi)

∣∣∣∣,
N4(A,B) = 1− 1

n

∑n

i=1

∣∣∣A(xi)2 −B(xi)2
∣∣∣,

N5(A,B) = 1
n

∑n

i=1

2 min(A(xi), B(xi))
A(xi) +B(xi)

,

N6(A,B) = 1
n

∑n

i=1

2A(xi)B(xi)
A(xi)2 +B(xi)2 ,

N7(A,B) = 1
n

∑n

i=1

2 min(A(xi)2
, B(xi)2)

A(xi)2 +B(xi)2 ,

N8(A,B) = 1
n

∑n

i=1

1− |A(xi)−B(xi)|
1 + |A(xi)−B(xi)|

,

N9(A,B) = 1
n

∑n

i=1

min(1−A(xi), 1−B(xi))
max(1−A(xi), 1−B(xi))

,

N10(A,B) = 1
n

∑n

i=1

2 min(1−A(xi), 1−B(xi))
2−A(xi)−B(xi)

,

N11(A,B) = 1
n

∑n

i=1

min((1−A(xi))B(xi), (1−B(xi))A(xi))
max((1−A(xi))B(xi), (1−B(xi))A(xi))

.
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Remark 7. Note that N1 was first given in [39], N2, N5 and N9 were first given in
[14], N8 was first given in [19]. These five similarity measures were proposed through
different approaches in the literature. However, all of them can be constructed by the
same formula in this chapter.
We have proved that Eα and Eβ are fuzzy equivalencies in Propositions 9 and

10. Therefore, we can use them to construct similarity measures by Eq.(3.3). The
following two propositions show that we can obtain another kind of general formula
of similarity measure by reconstructing Eα and Eβ .

Proposition 21. Given a discrete universe X = {x1, x2, ..., xn}. Suppose that Nθ is
a function defined for all A,B ∈ F (X) by

Nθ(A,B) =
∑n
i=1 (a− a |A(xi)−B(xi)|+ bmin(A(xi), B(xi)))∑n

i=1 (a− (a− 1) |A(xi)−B(xi)|+ bmin(A(xi), B(xi)))
. (3.4)

with a ≥ 0, b ≥ 0 and max(a, b) 6= 0, then Nθis a similarity measure.

Proof. It is easy to see that Nθ is a function from F (X) × F (X) to [0, 1] satisfying
N1 and N2. We only prove Nθ satisfies N3 here.
Since A ⊆ B ⊆ C implies A(xi) ≤ B(xi) ≤ C(xi) for each xi ∈ X, we have

Nθ(A,B) =
∑n
i=1 (a− a(B(xi)−A(xi)) + bA(xi))∑n

i=1 (a− (a− 1)(B(xi)−A(xi)) + bA(xi))
,

Nθ(B,C) =
∑n
i=1 (a− a(C(xi)−B(xi)) + bB(xi))∑n

i=1 (a− (a− 1)(C(xi)−B(xi)) + bB(xi))
,

Nθ(A,C) =
∑n
i=1 (a− a(C(xi)−A(xi)) + bA(xi))∑n

i=1 (a− (a− 1)(C(xi)−A(xi)) + bA(xi))
.

Considering the following two functions

f(y1, y2, ..., yn) =
∑n
i=1 (a− a(yi −A(xi)) + bA(xi))∑n

i=1 (a− (a− 1)(yi −A(xi)) + bA(xi))
,

g(w1, w2, ..., wn) =
∑n
i=1 (a− a(C(xi)− wi) + bwi)∑n

i=1 (a− (a− 1)(C(xi)− wi) + bwi)
,

where yi, wi ∈ [0, 1] and yi ≥ A(xi), wi ≤ C(xi) for each xi ∈ X, then we have

∂f

∂yi
=

−
∑n
i=1 (a+ bA(xi))

[
∑n
i=1 (a− (a− 1)(yi −A(xi)) + bA(xi))]2

≤ 0,

∂g

∂wi
=

∑n
i=1 (a+ bC(xi))

[
∑n
i=1 (a− (a− 1)(C(xi)− wi) + bwi)]2

≥ 0.

Therefore, we can conclude that f is decreasing with respect to yi(i = 1, 2, . . . , n)
and g is increasing with respect to wi(i = 1, 2, . . . , n). Thus we have Nθ(A,B) ≥
Nθ(A,C) and Nθ(B,C) ≥ Nθ(A,C) whenever A ⊆ B ⊆ C.
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Remark 8. In Eq.(3.4), let a = 1
2 , b = 0, then we have

N12(A,B) =
∑n
i=1 (1− |A(xi)−B(xi)|)∑n
i=1 (1 + |A(xi)−B(xi)|)

.

Let a = 1, b = 0, then we have

N13(A,B) = 1− 1
n

∑n

i=1
|A(xi)−B(xi)| = N1(A,B).

Let a = 0, b = 1, then we have

N14(A,B) =
∑n
i=1 min(A(xi), B(xi))∑n
i=1 max(A(xi), B(xi))

.

Let a = 0, b = 2, then we have

N15(A,B) =
2
∑n
i=1 min(A(xi), B(xi))∑n
i=1 (A(xi) +B(xi))

.

Let a = 1, b = 2, then we have

N16(A,B) =
∑n
i=1 (1− |A(xi)−B(xi)|+ 2 min(A(xi), B(xi)))∑n

i=1 (1 + 2 min(A(xi), B(xi)))
.

Note that the similarity measure N12 was designed in [19] and N14, N15 were
designed in [35], where the computation was more complicated than the one given
before.
Similar to Proposition 21 we obtain the following proposition.

Proposition 22. Given a discrete universe X = {x1, x2, ..., xn}. Suppose that Nδ is
a function defined for all A,B ∈ F (X) by

Nδ(A,B) =
∑n
i=1 (a− a |A(xi)−B(xi)|+ bmin(1−A(xi), 1−B(xi)))∑n

i=1 (a− (a− 1) |A(xi)−B(xi)|+ bmin(1−A(xi), 1−B(xi)))
,

(3.5)
with a ≥ 0, b ≥ 0 and max(a, b) 6= 0, then Nδ is a similarity measure.

Remark 9. In Eq.(3.5), let a = 0, b = 1, then we have

N17(A,B) =
∑n
i=1 min(1−A(xi), 1−B(xi))∑n
i=1 max(1−A(xi), 1−B(xi))

.

Let a = 0, b = 2, then we have

N18(A,B) =
2
∑n
i=1 min(1−A(xi), 1−B(xi))∑n
i=1 (2−A(xi)−B(xi))

.

Note that the similarity measure N17 was designed in [16].
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3.3.2 Constructing Divergence Measures via Dissimilarity
Functions

Let us consider the definition of divergence measure in the sense of Liu [43] and that
in the sense of Montes [32].

Definition 13. A function D : F (X)×F (X)→ [0,∞) is called a divergence measure
in the sense of Liu if it satisfies:

(1) D(A,B) = D(B,A) for all A,B ∈ F (X),

(2) D(A,A) = 0 for all A ∈ F (X),

(3) for all A,B,C ∈ F (X), if A ⊆ B ⊆ C, then max(D(A,B), D(B,C)) ≤
D(A,C),

(4) D(A,B) ≤ D(P, P c)for all A,B ∈ F (X) and P ∈ P (X).

Definition 14. A function D : F (X)×F (X)→ [0,∞) is called a divergence measure
in the sense of Montes if it satisfies:

(1) D(A,B) = D(B,A) for all A,B ∈ F (X),

(2) D(A,A) = 0 for all A ∈ F (X),

(3) max(D(A ∪ C,B ∪ C), D(A ∩ C,B ∩ C)) ≤ D(A,B) for all A,B,C ∈ F (X).

The first three axioms in both of the definitions are defined on the basis of the following
natural properties [32]:

(a) It is a non-negative and symmetric function of the compared fuzzy sets.

(b) It becomes zero when the compared fuzzy sets coincide.

(c) It decreases when the compared fuzzy sets become “more similar” in some sense.

The fourth axiom in Definition 13 is defined on the basis of the following natural
property.

(d) For a crisp set P ∈ P (X), we have P (x) = 1 or 0 for any x ∈ X. Hence,
P c(x) = 0 or 1. Thus for any x ∈ X, we have x ∈ P or x ∈ P c. Therefore, the
normalized divergence degree between P and P c is always equal to 1. However,
the normalized divergence degree between any two fuzzy sets A and B is not
always equal to 1, i.e., it is less than or equal to 1. Therefore, the divergence
between a crisp set and its complement is larger than the divergence between
any two fuzzy sets.

The third axiom of the two definitions depends on the formalization of the concept of
“more similar”. Liu [43] based his approach on the fact that the closer two fuzzy sets
are, the smaller their divergence is. Montes [32] based her approach on the fact that
if joining (resp. intersecting) both A and B with another fuzzy set C, the divergence
should decrease, as A∪C and B ∪C (resp. A∩C and B ∩C) are more similar than
A and B. It is shown that Axiom 3 in the sense of Liu is more general than that in
the sense of Montes from the following proposition [32].
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Proposition 23. Let D be a divergence measure in the sense of Montes, then

max(D(A,B), D(B,C)) ≤ D(A,C),

whenever A ⊆ B ⊆ C.

This subsection will introduce two manners of constructing divergence measure in
the sense of Liu and that in the sense of Montes.

Proposition 24. Given a discrete universe X = {x1, x2, . . . , xn}. Let d be a dissim-
ilarity function. Suppose D : F (X) × F (X) → [0,∞) is a function defined for all
A,B ≤ F (X) by

D(A,B) =
∑n

i=1
d(A(xi), B(xi)).

Then D is both a divergence measure in the sense of Montes and a divergence measure
in the sense of Liu.

Proof. It is quite evident that D satisfies Axioms 1 and 2. Note that

D(A ∪ C,B ∪ C) =
∑n

i=1
d(max(A(xi), C(xi)),max(B(xi), C(xi))),

D(A ∩ C,B ∩ C) =
∑n

i=1
d(min(A(xi), C(xi)),min(B(xi), C(xi))).

Since d is a dissimilarity function, according to Proposition 19, we have∑n

i=1
d(max(A(xi), C(xi)),max(B(xi), C(xi))) ≤

∑n

i=1
d(A(xi), B(xi)),∑

n
i=1d(min(A(xi), C(xi)),min(B(xi), C(xi))) ≤

∑n

i=1
d(A(xi), B(xi)).

Therefore, we have max(D(A∪C,B∪C), D(A∩C,B∩C)) ≤ D(A,B). According to
Proposition 23, we have max(D(A,B), D(B,C)) ≤ D(A,C) whenever A ⊆ B ⊆ C.
Furthermore, we have D(P, P c) =

∑n
i=1 d(P (xi), 1− P (xi)) = n ≥ D(A,B) for all

A,B ∈ F (X). Thus we conclude that D is both a divergence measure in the sense
of Montes and a divergence measure in the sense of Liu.

The result given in Proposition 24 is just the way of constructing divergence mea-
sures proposed by Montes [32] and Bustince [8].

Proposition 25. Given a discrete universe X = {x1, x2, . . . , xn}. Let d and E be a
dissimilarity function and a fuzzy equivalence, respectively. If D is a function defined
for all A,B ∈ F (X) by

D(A,B) =
a
∑n
i=1 d(A(xi), B(xi))

a
∑n
i=1 d(A(xi), B(xi)) + b

∑n
i=1 E(A(xi), B(xi))

+ c
∑n
i=1 min(A(xi), B(xi))

, (3.6)

where a > 0, b ≥ 0, c ≥ 0 and max(b, c) > 0, then D is a divergence measure in the
sense of Liu.
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Proof. It is easy to prove that D is a function from F (X)× F (X) to [0, 1] satisfying
Axioms 1, 2 and 4. We prove that Axiom 3 holds.
For all A,B,C ∈ F (X) satisfying A ⊆ B ⊆ C, if D(A,B) = 0, then D(A,B) ≤

D(A,C). SinceA ⊆ B ⊆ C impliesA(xi) ≤ B(xi) ≤ C(xi) for each xi ∈ X, we have
d(A(xi), B(xi)) ≤ d(A(xi), C(xi)). Thus we obtain that

∑n
i=1 d(A(xi), B(xi)) ≤∑n

i=1 d(A(xi), C(xi)).If D(A,B) 6= 0, then D(A,C) 6= 0. Therefore, we have

1
D(A,B) = 1 +

b
∑n
i=1 E(A(xi), B(xi)) + c

∑n
i=1 A(xi)

a
∑n
i=1 d(A(xi), B(xi))

,

1
D(A,C) = 1 +

b
∑n
i=1 E(A(xi), C(xi)) + c

∑n
i=1 A(xi)

a
∑n
i=1 d(A(xi), C(xi))

.

Since A(xi) ≤ B(xi) ≤ C(xi) for each xi ∈ X, we have

b
∑n

i=1
E(A(xi), B(xi)) ≥ b

∑n

i=1
E(A(xi), C(xi)),

a
∑n

i=1
d(A(xi), B(xi)) ≤ a

∑n

i=1
d(A(xi), C(xi)).

Thus we have 1
D(A,B) ≥

1
D(A,C) .Therefore, D(A,B) ≤ D(A,C) holds. The case of

D(B,C) ≤ D(A,C) can be proved similarly.

Example 11. Let us take d = d1 and E = E1 in Proposition 25.

(1) If a = 1, b = 1, c = 0, then we have

D1(A,B) = 1
n

∑n

i=1
|A(xi)−B(xi)|.

It is the normalization of Hamming distance.

(2) If a = 1, b = 0, c = 1, then we have

D2(A,B) =
∑n
i=1 |A(xi)−B(xi)|∑n

i=1 max(A(xi), B(xi))
.

It is a divergence measure constructed by the set theoretic approach [3].

(3) If a = 1, b = 0, c = 2, then we have

D3(A,B) =
∑n
i=1 |A(xi)−B(xi)|∑n
i=1 (A(xi) +B(xi))

.

It is a divergence measure proposed by Pappis and Karacapilidis [35].

Note that Eq.(3.6) is a unified form of D1, D2 and D3. We can discuss properties
of them through discussing properties of Eq.(3.6). More divergence measures can be
obtained in case we take different a, b, c on Eq.(3.6). The following example shows
that the proposed divergence measure is more powerful than the Hamming distance
which has been extensively used.
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Example 12. Let X = {x1, x2} and let A, B and C be fuzzy sets in F (X) with
A = {0, 1}, B =

{ 1
2 , 1
}
, C =

{
0, 1

2
}
. Using the Hamming distance, we have

D(A,B) =
∑2
i=1 |A(xi)−B(xi)| = 1

2 = D(A,C). The divergence between A and
B is the same as the one between A and C. On the other hand, the α-cuts of A and B
for α > 1

2 (i.e., the “important” α-cuts) are the same, which is not true for A and C.
From this point of view we can require that the divergence between A and B should
be smaller than that between A and C (this viewpoint was given by Couso [11]). We
try to introduce another divergence measure that would reflect the above-mentioned
difference. Let us take d = d1 and E = E1 on Eq.(3.6) (c 6= 0), then we have

D(A,B) =
a
∑2
i=1 |A(xi)−B(xi)|

a
∑2
i=1 |A(xi)−B(xi)|+ b

∑2
i=1(1− |A(xi)−B(xi)|)

+ c
∑2
i=1 min(A(xi), B(xi))

= a

a+ 3b+ 2c ,

D(A,C) =
a
∑2
i=1 |A(xi)− C(xi)|

a
∑2
i=1 |A(xi)− C(xi)|+ b

∑2
i=1(1− |A(xi)− C(xi)|)

+ c
∑2
i=1 min(A(xi), C(xi))

= a

a+ 3b+ c
.

Therefore, we have D(A,C) ≥ D(A,B), what reflects the fact that the divergence
between A and C are on higher membership degree.
Remark 10. By Eq.(3.6), we obtain divergence measures based on the set theoretic
approach.

Proposition 26. Let A, B and C be fuzzy sets in F (X), D a function defined by
Eq.(3.6), then we have D(A ∪ C,B ∪ C) ≤ D(A,B).

Proof. If D(A ∪ C,B ∪ C) = 0, then we have D(A,B) ≥ D(A ∪ C,B ∪ C). If
D(A ∪ C,B ∪ C) 6= 0, then D(A,B) 6= 0. Therefore, we have

1
D(A,B) = 1 +

b
∑n
i=1 E(A(xi), B(xi)) + c

∑n
i=1 min(A(xi), B(xi))

a
∑n
i=1 d(A(xi), B(xi))

,

1
D(A ∪ C,B ∪ C) = 1 +

b
∑n
i=1 E(M(xi), Q(xi)) + c

∑n
i=1 min(M(xi), Q(xi))

a
∑n
i=1 d(M(xi), Q(xi))

,

where M(xi) = max(A(xi), C(xi)), Q(xi) = max(B(xi), C(xi)) for each xi ∈ X.
By Lemma 3 and Proposition 19, we have

b
∑n

i=1
E(M(xi), Q(xi)) ≥ b

∑n

i=1
E(A(xi), B(xi)),

a
∑n

i=1
d(M(xi), Q(xi)) ≤ a

∑n

i=1
d(A(xi), B(xi)).

Thus D(A,B) ≥ D(A ∪ C,B ∪ C).
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Remark 11. For the function defined by Eq.(3.6), we cannot always conclude that
D(A ∩ C,B ∩ C) ≤ D(A,B). For example, suppose X = {x1, x2}, considering the
divergence measure in the sense of Liu

D2(A,B) =
∑n
i=1 |A(xi)−B(xi)|∑n

i=1 max(A(xi), B(xi))
.

Let A = {0.7, 1}, B = {0.8, 0.4}, C = {0.3, 0.9}, then we have D2(A∩C,B ∩C) =
0.42, D2(A,B) = 0.39 and thus D2(A,B) < D2(A ∩ C,B ∩ C). Therefore, the
function defined by Eq.(3.6) is not always a divergence measure in the sense of Montes.
The following proposition gives the conditions under which Eq.(3.6) satisfies D(A∩

C,B ∩ C) ≤ D(A,B).

Proposition 27. Let A, B and C be fuzzy sets in F (X), D a function defined by
Eq.(3.6). If c = 0 in Eq.(3.6), then we have D(A ∩ C,B ∩ C) ≤ D(A,B).

Proof. It can be proved in the same manner with Proposition 26.

According to Propositions 26 and 27, we have

Proposition 28. Given a discrete universe X = {x1, x2, . . . , xn}. Let d and E be a
dissimilarity function and a fuzzy equivalence, respectively. If D is a function defined
for all A,B ∈ F (X) by

D(A,B) =
a
∑n
i=1 d(A(xi), B(xi))

a
∑n
i=1 d(A(xi), B(xi)) + b

∑n
i=1 E(A(xi), B(xi))

, (3.7)

where a > 0, b > 0, then D is a divergence measure in the sense of Montes.

Remark 12. We find from Propositions 25 and 28 that the divergence measure in the
sense of Liu is more general than that in the sense of Montes.

Example 13. Let us take d = d1 and E = E1 in Proposition 28. If a = 1, b = 1
2 ,

then we have
D4(A,B) =

2
∑n
i=1 |A(xi)−B(xi)|∑n

i=1 (1 + |A(xi)−B(xi)|)
.

It is a divergence measure in the sense of Montes as well as a divergence measure in
the sense of Liu.

3.4 Relationships Between Similarity Measures and
Subsethood Measures

This subsection discusses relationships between similarity measures and subsethood
measures and proposes several propositions that similarity measures and subsethood
measures can be transformed by each other based on their axiomatic definitions.
We have referred to the definition of similarity measure in Section 3.3. Several

reasonable properties may be required for similarity measures; among them we consider
the following in this subsection:
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(N4) N(A,B) = 1 if and only if A = B,

(N5) N(A,B) = 0 if and only if A ∩B = Ø and A ∪B 6= Ø,

(N6) if A ⊆ B, then N(A ∪ C,A) ≤ N(B ∪ C,B) for all A,B,C ∈ F (X),

(N7) if A ⊆ B, then N(A,A ∩ C) ≥ N(B,B ∩ C) for all A,B,C ∈ F (X),

(N8) N(A,A ∩Ac) = 0 if and only if A = X for all A ∈ F (X)

(N9) N(A ∪Ac, Ac) = 0 if and only if A = X for all A ∈ F (X).

On the basis of Kosko’s [23, 24] subsethood measure, fuzzy entropy and Wilmott’s
work [42], Young defined subsethood measure in the following way:

Definition 15. A function cV Y : F (X) × F (X) → [0, 1] is called a VY-subsethood
measure, if cV Y satisfies the following conditions:

(C1) cV Y (A,B) = 1 if and only if A ⊆ B, i.e., A(x) ≤ B(x) for all x ∈ X,

(C2) if [ 1
2 ] ⊆ A, then cV Y (A,Ac) = 0 if and only if A = X,

(C3) if A ⊆ B ⊆ C, then cV Y (C,A) ≤ cV Y (B,A) and if A ⊆ B, then cV Y (C,A) ≤
cV Y (C,B).

It has been pointed out in [17] that C3 is too strong when considering the relation
between subsethood measure and fuzzy entropy. Therefore, Fan et al. [17] thought a
simpler form of definition of subsethood measure based on Young’s definition.

Definition 16. A function c∗ : F (X) × F (X) → [0, 1] is called a ∗-subsethood
measure, if c∗ satisfies the following conditions:

(C1) c∗(A,B) = 1 if and only if A ⊆ B, i.e., A(x) ≤ B(x) for all x ∈ X,

(C2) if [ 1
2 ] ⊆ A, then c∗(A,Ac) = 0 if and only if A = X,

(C3) if A ⊆ B ⊆ C, then c∗(C,A) ≤ c∗(B,A) and c∗(C,A) ≤ c∗(C,B).

Obviously, the only difference between Definitions 15 and 16 is in C3 where Young de-
mands increasingness in the second component. Thus every VY -subsethood measure
is also a ∗-subsethood measure. In 2006, Bustince et al. [9] modified two of Young’s
axioms and proposed a new class of subsethood measure called DI-subsethood mea-
sure.

Definition 17. A function cDI : F (X) × F (X) → [0, 1] is called a DI-subsethood
measure, if cDI satisfies the following conditions:

(C1) cDI(A,B) = 1 if and only if A ⊆ B, i.e., A(x) ≤ B(x) for all x ∈ X,

(C2) cDI(A,Ac) = 0 if and only if A = X ,

(C3) if A ⊆ B, then cDI(A,C) ≥ cDI(B,C) and cDI(C,A) ≤ cDI(C,B).
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It is shown that every DI-subsethood measure is a VY -subsethood measure and there-
fore, it is also a ∗-subsethood measure.
Considering that an axiom definition must generally be abstract and simple, Fan

[17] gave the following definition.

Definition 18. A function c : F (X)×F (X)→ [0, 1] is called a subsethood measure,
if c satisfies the following conditions:

(C1) c(A,B) = 1 in case A ⊆ B,

(C2) c(X,Ø) = 0,

(C3) if A ⊆ B ⊆ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B).

We can see that VY -subsethood measure, ∗-subsethood measure and DI-subsethood
measure are special cases of subsethood measures. In the following we derive subset-
hood measures from similarity measures.

Proposition 29. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a simi-
larity measure, c a function defined for all A,B ∈ F (X) by c(A,B) = N(A,A ∩B).
Then we obtain the following conclusions:

(1) c is a subsethood measure,

(2) if N satisfies N4 and N8, then c is a VY -subsethood measure,

(3) if N satisfies N4 and N8, then c is a ∗-subsethood measure,

(4) if N satisfies N4 and N5, then c is a VY -subsethood measure,

(5) if N satisfies N4 and N5, then c is a ∗-subsethood measure,

(6) if N satisfies N4, N7 and N8, then c is a DI-subsethood measure.

Proof.
(1) (C1) If A ⊆ B, then c(A,B) = N(A,A ∩ B) = N(A,A) = 1. (C2) c(X,Ø) =
N(X,X ∩Ø) = N(X,Ø) = 0. (C3) If A ⊆ B ⊆ C, then c(C,A) = N(C,C ∩A) =
N(C,A), c(B,A) = N(B,B ∩ A) = N(B,A) and c(C,B) = N(C,C ∩ B) =
N(C,B). Since N(C,A) ≤ N(B,A), we have c(C,A) ≤ c(B,A). Since N(C,A) ≤
N(C,B), we have c(C,A) ≤ c(C,B).

(2) (C1) The sufficiency has been proved in (1), we only prove the necessity here. If
c(A,B) = 1, then N(A,A∩B) = 1. By N4 we have A = A∩B. Thus A ⊆ B holds.
(C2) If c(A,Ac) = 0, then N(A,A∩Ac) = 0. As N satisfies N8 and [ 1

2 ] ⊆ A we have
A = X. On the contrary, if A = X, then c(A,Ac) = N(A,A ∩Ac) = N(X,Ø) = 0.
(C3) We only prove that A ⊆ B implies c(C,A) ≤ c(C,B) here. If A ⊆ B, then
C ∩ A ⊆ C ∩ B ⊆ C, we have c(C,A) = N(C,C ∩ A), c(C,B) = N(C,C ∩ B).
Since N(C,C ∩A) ≤ N(C,C ∩B), then c(C,A) ≤ c(C,B).

(3) It follows directly from (2).
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(4) We only prove that the necessity of C2 also holds when N satisfies N5. If
[ 1

2 ] ⊆ A, then c(A,Ac) = N(A,A ∩ Ac) = N(A,Ac) = 0. As N satisfies N5 we
have A ∩Ac = Ø, that is Ac = Ø, thus A = X.

(5) It follows directly from (4).

(6) It can be proved in the same manner with (2).

Example 14. Consider the following two similarity measures:

N2(A,B) = 1
n

∑n

i=1

min(A(xi), B(xi))
max(A(xi), B(xi))

.

N14(A,B) =
∑n
i=1 min(A(xi), B(xi))∑n
i=1 max(A(xi), B(xi))

.

It is shown that N2 satisfies properties N4, N6, N7, N8, N9 and N14 satisfies properties
N4, N5, N6. By Proposition 29, we obtain the following subsethood measures:

c1(A,B) = 1
n

∑n

i=1

min(A(xi), B(xi))
A(xi)

.

c2(A,B) =
∑n
i=1 min(A(xi), B(xi))∑n

i=1 A(xi)
.

We can conclude that c1 is a DI-subsethood measure and it is also a VY -subsethood
measure and ∗-subsethood measure. We also conclude that c2 is a VY -subsethood
measure and ∗-subsethood measure.

Proposition 30. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a simi-
larity measure, c a function defined for all A,B ∈ F (X) by c(A,B) = N(A ∪B,B).
Then we obtain the following conclusions:

(1) c is a subsethood measure,

(2) if N satisfies N4, N6 and N9, then c is a VY -subsethood measure,

(3) if N satisfies N4 and N9, then c is a ∗-subsethood measure,

(4) if N satisfies N4, N5 and N6, then c is a VY -subsethood measure,

(5) if N satisfies N4 and N5, then c is a ∗-subsethood measure,

(6) if N satisfies N4, N6 and N9, then c is a DI-subsethood measure.

Proof. It can be proved in the same manner with Proposition 29.
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Example 15. Consider the following two similarity measures:

N12(A,B) =
∑n
i=1 (1− |A(xi)−B(xi)|)∑n
i=1 (1 + |A(xi)−B(xi)|)

.

N15(A,B) =
2
∑n
i=1 min(A(xi), B(xi))∑n
i=1 (A(xi) +B(xi))

.

It is shown thatN12 satisfies properties N4, N6, N7, N8, N9 andN15 satisfies properties
N4, N5, N6. By Proposition 30, we obtain the following subsethood measures:

c3(A,B) =
∑n
i=1 (1− |max(A(xi), B(xi))−B(xi)|)∑n
i=1 (1 + |max(A(xi), B(xi))−B(xi)|)

.

c4(A,B) =
∑n
i=1 2B(xi)∑n

i=1 (max(A(xi), B(xi)) +B(xi))
.

We can conclude that c3 is a DI-subsethood measure and it is also a VY -subsethood
measure and ∗-subsethood measure. We also conclude that c4 is a VY -subsethood
measure and ∗-subsethood measure.

Proposition 31. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a similar-
ity measure, c a function defined for all A,B ∈ F (X) by c(A,B) = N(Ac, Ac ∪Bc).
Then we obtain the following conclusions:

(1) c is a subsethood measure,

(2) if N satisfies N4 and N9, then c is a VY -subsethood measure,

(3) if N satisfies N4 and N9, then c is a ∗-subsethood measure,

(4) if N satisfies N4 and N5, then c is a VY -subsethood measure,

(5) if N satisfies N4 and N5, then c is a ∗-subsethood measure,

(6) if N satisfies N4, N6 and N9, then c is a DI-subsethood measure.

Proof. It can be proved in the same manner with Proposition 29.

Proposition 32. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a similar-
ity measure, c a function defined for all A,B ∈ F (X) by c(A,B) = N(Ac ∩Bc, Bc).
Then we obtain the following conclusions:

(1) c is a subsethood measure.

(2) if N satisfies N4, N7 and N8, then c is a VY -subsethood measure.

(3) if N satisfies N4 and N8, then c is a ∗-subsethood measure.

(4) if N satisfies N4, N5 and N7, then c is a VY -subsethood measure.

(5) if N satisfies N4 and N5, then c is a ∗-subsethood measure.
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(6) if N satisfies N4, N7 and N8, then c is a DI-subsethood measure.

Proof. Proof. It can be proved in the same manner with Proposition 29.

In the following proposition we derive similarity measures from subsethood measures.

Proposition 33. Given a discrete universe X = {x1, x2, . . . , xn}. Let c be a subset-
hood measure, T a t-norm, N a function defined for all A,B ∈ F (X) by N(A,B) =
T (c(A,B), c(B,A)), then N is a similarity measure.

Proof.
(N1) N(X,Ø) = T (c(X,Ø), c(Ø, X)) = 0 and N(A,A) = T (c(A,A), c(A,A)) = 1.
(N2) N(A,B) = T (c(A,B), c(B,A)) = T (c(B,A), c(A,B)) = N(B,A).
(N3) If A ⊆ B ⊆ C, then N(A,C) = T (c(A,C), c(C,A)) = c(C,A), N(A,B) =
T (c(A,B), c(B,A)) = c(B,A) and N(B,C) = T (c(B,C), c(C,B)) = c(C,B).
Since c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B), then N(A,C) ≤ N(A,B) and
N(A,C) ≤ N(B,C).

Corollary 1. In the conditions of Proposition 33, let T = TP , then the similarity
measure derived by subsethood measure can be expressed as:

N(A,B) = c(A,B) · c(B,A).

Corollary 2. In the conditions of Proposition 33, let T = TM , then the similarity
measure derived by subsethood measure can be expressed as:

N(A,B) = min(c(A,B), c(B,A)).

Remark 13. We see that the two formulae given in Corollaries 1 and 2 are the same
as the ones given by Zeng and Li [44]. Hence Zeng’s solutions can be seen as two
special cases of ours.

Example 16. Consider the following subsethood measure:

c5(A,B) = 1
n

∑n

i=1

min(1−A(xi), 1−B(xi))
1−B(xi)

.

By Corollary 2, we obtain the following similarity measure:

N17(A,B) =
∑n
i=1 min(1−A(xi), 1−B(xi))∑n
i=1 max(1−A(xi), 1−B(xi))

.

3.5 Relationships Between Similarity Measures and
Fuzzy Entropies

This subsection discusses the relationships between similarity measures and fuzzy en-
tropies and proposes several propositions that similarity measures and fuzzy entropies
can be transformed by each other based on their axiomatic definitions.
A measure of fuzzy entropy assesses the amount of vagueness, or fuzziness in a

fuzzy set. De Luca and Termini [31] formalize properties of fuzzy entropy through the
following axioms.
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Definition 19. A function e : F (X) → [0, 1] is called an entropy on F (X), if e
satisfies the following conditions:

(EP1) e(A) = 0 if and only if A is nonfuzzy, i.e., A ∈ P (X),

(EP2) e(A) = 1 if and only if A = [ 1
2 ],

(EP3) e(A) ≤ e(B) in case A refines B, i.e., A(x) ≤ B(x) when B(x) ≤ 1
2 and

A(x) ≥ B(x) when B(x) ≥ 1
2 .

(EP4) e(A) = e(Ac).

Let E be a fuzzy equivalence, µ a strictly decreasing function from [0, 1] to [ 1
2 , 1] with

boundary conditions µ(0) = 1, µ(1) = 1
2 . For fuzzy sets A and B, we definef(A,B) ∈

F (X), for all x ∈ X,f(A,B)(x) = µ(E(A(x), B(x))), then we have the following
conclusion.

Proposition 34. Given a discrete universe X = {x1, x2, . . . , xn}. Let e be a fuzzy
entropy, N a function defined for all A,B ∈ F (X) by N(A,B) = e(f(A,B)), then
N is a similarity measure.

Proof.
(N1) For all x ∈ X, f(X,Ø)(x) = µ(E(X(x),Ø(x))) = µ(E(1, 0)) = µ(0) = 1,
then f(X,Ø) = X. Therefore, N(X,Ø) = e(X) = 0. Note that f(A,A)(x) =
µ(E(A(x), A(x))) = µ(1) = 1

2 , then f(A,A) = [ 1
2 ]. Thus N(A,A) = e(f(A,A)) =

e([ 1
2 ]) = 1.

(N2) It is easy to see that N(A,B) = e(f(A,B)) = e(f(B,A)) = N(B,A).
(N3) A ⊆ B ⊆ C implies A(x) ≤ B(x) ≤ C(x) for all x ∈ X, by E4 we
have E(A(x), C(x)) ≤ min(E(A(x), B(x)), E(B(x), C(x))). By the property of µ,
µ(E(A(x), C(x))) ≥max(µ(E(A(x), B(x))), µ(E(B(x), C(x)))) ≥ 1

2 , i.e.,

f(A,C)(x) ≥ max(f(A,B)(x), f(B,C)(x)) ≥ 1
2 .

By EP3, we have e(f(A,C)) ≤min(e(f(A,B)), e(f(B,C))). Therefore, N(A,C) ≤
min(N(A,B), N(B,C)).

Remark 14. In Proposition 34, let µ(x) = 1− 1
2x,E(x, y) = 1−|x− y|n,then we have

f(A,B)(x) = 1+|A(x)−B(x)|n
2 . Thus the similarity measure e(f(A,B)) is in accord

with the one given in [44].

Example 17. Consider the fuzzy equivalence E(x, y) = ϕ−1(1 − |ϕ(x)− ϕ(y)|),
where ϕ is an automorphism of the unit interval. Suppose µ(x) = 1 − 1

2x, then we
have f(A,B)(x) = 1− 1

2ϕ
−1(1−|ϕ(A(x))− ϕ(B(x))|). Consider the following fuzzy

entropy:
e1(A) = 2

n

∑n

i=1
min(A(xi), 1−A(xi)).

By Proposition 34, we obtain the following similarity measure:

N19(A,B) = 1
n

∑n

i=1
ϕ−1(1− |ϕ(A(xi))− ϕ(B(xi))|).

Note that N19 is a similarity measure constructed in [8].
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Let E be a fuzzy equivalence, λ a strictly increasing function from [0, 1] to [0, 1
2 ]

with boundary conditions λ(0) = 0, λ(1) = 1
2 . For fuzzy sets A and B, we define

g(A,B) ∈ F (X), for all x ∈ X, g(A,B)(x) = λ(E(A(x), B(x))), then we have the
following conclusion.

Proposition 35. Given a discrete universe X = {x1, x2, . . . , xn}. Let e be a fuzzy
entropy, N a function defined for all A,B ∈ F (X) by N(A,B) = e(g(A,B)), then
N is a similarity measure.

Proof. It can be proved in the same manner with Proposition 34.

Let E be a fuzzy equivalence satisfying E5 and E9, µ and λ the functions defined
as above. For fuzzy set A, we define p(A), q(A) ∈ F (X), for all x ∈ X, p(A)(x) =
f(A,Ac)(x) = µ(E(A(x), Ac(x))), q(A)(x) = g(A,Ac)(x) = λ(E(A(x), Ac(x))).
By the definitions of µ and λ we know that q(A)(x) ≤ p(A)(x) for all x ∈ X, i.e.,
q(A) ⊆ p(A). We have the following conclusion.

Proposition 36. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a sim-
ilarity measure satisfying N5 and N6, e a function defined for all A ∈ F (X) by
e(A) = N(p(A), q(A)), then e is a fuzzy entropy.

Proof.
(EP1) (Necessity) If N(p(A), q(A)) = e(A) = 0, then by N5, p(A) ∩ q(A) = Ø.
Since q(A) ⊆ p(A), we have q(A)(x) = λ(E(A(x), Ac(x))) = 0 for all x ∈ X. Since
λ is a strictly increasing function satisfying λ(0) = 0, then E(A(x), Ac(x)) = 0. As
E satisfies E9 we have A(x) = 1 or A(x) = 0. Therefore, A is nonfuzzy.
(Sufficiency) If A is nonfuzzy, then we have A(x) = 1 or A(x) = 0 for all x ∈ X. Thus
E(A(x), Ac(x)) = 0. This means that q(A)(x) = λ(0) = 0, p(A)(x) = µ(0) = 1
for all x ∈ X. Therefore, q(A) = Ø, p(A) = X. We have e(A) = N(p(A),
q(A)) = N(X,Ø) = 0.
(EP2) (Necessity) If N(p(A), q(A)) = e(A) = 1, then by N6, p(A) = q(A). There-
fore, p(A)(x) = µ(E(A(x), Ac(x))) = λ(E(A(x), Ac(x))) = q(A)(x) for all x ∈ X.
By the properties of µ and λ, we have E(A(x), Ac(x)) = 1. As E satisfies E9 we
have A(x) = Ac(x), that is to say, A(x) = 1

2 .
(Sufficiency) If A = [ 1

2 ], then A(x) = 1
2 for all x ∈ X. Thus we conclude that

E(A(x), Ac(x)) = E( 1
2 ,

1
2 ) = 1. This means that q(A)(x) = λ(1) = 1

2 , p(A)(x) =
µ(1) = 1

2 for all x ∈ X. Therefore, we have p(A) = q(A), e(A) = N(p(A), q(A)) = 1.
(EP3) For x ∈ X, if A(x) ≥ B(x) ≥ 1

2 , then A
c(x) ≤ Bc(x) ≤ 1

2 , thus A
c(x) ≤

Bc(x) ≤ 1
2 ≤ B(x) ≤ A(x). By E4 we have E(A(x), Ac(x)) ≤ E(B(x), Bc(x)). By

the properties of µ and λ, λ(E(A(x), Ac(x))) ≤ λ(E(B(x), Bc(x))) ≤ µ(E(B(x),
Bc(x))) ≤ µ(E(A(x), Ac(x))). This means that q(A) ⊆ q(B) ⊆ p(B) ⊆ p(A). Thus
N(p(A), q(A)) ≤ N(p(B), q(A)) ≤ N(p(B), q(B)). That is to say, e(A) ≤ e(B).
The case of A(x) ≤ B(x) ≤ 1

2 can be proved similarly.
(EP4) Since p(A) = p(Ac), q(A) = q(Ac), then e(A) = N(p(A), q(A)) = N(p(Ac),
q(Ac)) = e(Ac).

Remark 15.
(1) In conditions of Proposition 36, let µ(x) = 1 − 1

2x, λ(x) = 1
2x, E(x, y) =
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1 − |x− y|n, then we have p(A)(x) = 1+|A(x)−Ac(x)|n
2 , q(A)(x) = 1−|A(x)−Ac(x)|n

2 .
Therefore, the fuzzy entropy N(p(A), q(A)) is in accord with the one given by Zeng
and Li [44].
(2) In conditions of (1), if n = 1, then we have p(A)(x) = 1+|A(x)−Ac(x)|

2 =
max(A(x), Ac(x)) and q(A)(x) = 1−|A(x)−Ac(x)|

2 = min(A(x), Ac(x)). This means
that p(A) = A∪Ac, q(A) = A∩Ac. Thus the fuzzy entropy constructed by similarity
measure N can be expressed as N(A∪Ac, A∩Ac). This is the solution given by Fan
[13].

Example 18. Suppose µ(x) = 1− 1
2x, λ(x) = 1

2x, E(x, y) = ϕ−1(1−|ϕ(x)− ϕ(y)|),
where ϕ is an automorphism of the unit interval. Since E is a fuzzy equivalence
satisfying E5 and E9, we have

q(A)(x) = λ(E(A(x), Ac(x))) = 1
2ϕ
−1(1− |ϕ(A(x))− ϕ(1−A(x))|),

p(A)(x) = µ(E(A(x), Ac(x))) = 1− 1
2ϕ
−1(1− |ϕ(A(x))− ϕ(1−A(x))|).

Consider the following similarity measure:

N14(A,B) =
∑n
i=1 min(A(xi), B(xi))∑n
i=1 max(A(xi), B(xi))

.

It is shown that N14 satisfies properties N4, N5, N6. By Proposition 36, we obtain
the following fuzzy entropy:

e2(A) =
∑n
i=1 ϕ

−1(1− |ϕ(A(xi))− ϕ(1−A(xi))|)∑n
i=1 (2− ϕ−1(1− |ϕ(A(xi))− ϕ(1−A(xi))|))

.

Proposition 37. Given a discrete universe X = {x1, x2, . . . , xn}. Let N be a sim-
ilarity measure satisfying N5 and N6, e a function defined for all A ∈ F (X) by
e(A) = N(A,Ac), then e is a fuzzy entropy.

Proof. It follows from Proposition 36 that this proposition holds.

3.6 Relationships Between Subsethood Measures and
Fuzzy Entropies

This subsection discusses the relationships between subsethood measures and fuzzy
entropies and proposes several propositions that subsethood measures and fuzzy en-
tropies can be transformed by each other based on their axiomatic definitions.
At first blush, subsethood measure and fuzzy entropy do not seem related. To relate

subsethood measure with fuzzy entropy, Kosko [23] proposed the following expression:
given a subsethood measure c, the fuzzy entropy e generated by c is defined as e(A) =
c(A∪Ac, A∩Ac) for all A ∈ F (X). For showing the conditions of c for which e can be a
fuzzy entropy, several axiomatizations were given in the literature. In the previous part
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of this chapter, we have referred to three concepts of subsethood measure, that is, VY -
subsethood measure, ∗-subsethood measure, and DI-subsethood measure. It is shown
that all DI-subsethood measure is VY -subsethood measure and therefore, it is also
∗-subsethood measure. We know that the three conditions of ∗-subsethood measure
are enough to demand the conditions for the expression: e(A) = c(A∪Ac, A∩Ac) to
fulfill the conditions demanded from fuzzy entropy. Therefore, we use ∗-subsethood
measure to construct fuzzy entropy here.

Proposition 38. Given a discrete universe X = {x1, x2, . . . , xn}. Let c be a ∗-
subsethood measure, p(A) defined as above. Suppose (p(A))c is the complement
of the fuzzy set p(A). If e is a function defined for all A ∈ F (X) by e(A) =
c(p(A), (p(A))c), then e is a fuzzy entropy.

Proof.
(EP1) (Necessity) Since p(A)(x) ≥ 1

2 , then we have [ 1
2 ] ⊆ p(A). If c(p(A),

(p(A))c) = 0, then by C2 of ∗-subsethood measure, we have p(A) = X. This
means that p(A)(x) = µ(E(A(x), Ac(x))) = 1 for all x ∈ X. Thus according to the
properties of µ we have E(A(x), Ac(x)) = 0. As E satisfies E9 we have A(x) = 1 or
A(x) = 0. Therefore, A is nonfuzzy.
(Sufficiency) A is nonfuzzy implies A(x) = 1 or A(x) = 0 for all x ∈ X. This means
that E(A(x), Ac(x)) = 0. Thus p(A)(x) = µ(0) = 1, p(Ac)(x) = 0, that is to say,
p(A) = X. Therefore, we have e(A) = c(p(A), (p(A))c) = c(X,Ø) = 0.
(EP2) (Necessity) If c(p(A), (p(A))c) = e(A) = 1, then by C1 of ∗-subsethood
measure, p(A) ⊆ (p(A))c. As (p(A))c ⊆ p(A) we have (p(A))c = p(A). Thus
µ(E(A(x), Ac(x))) = 1

2 for all x ∈ X. According to properties of µ, we have
E(A(x), Ac(x)) = 1. As E satisfies E5 we have A(x) = Ac(x), that is to say,
A(x) = 1

2 .
(Sufficiency) If A = [ 1

2 ], then A(x) = 1
2 for all x ∈ X. Thus we conclude

that E(A(x), Ac(x)) = 1. This means that p(A)(x) = (p(A))c(x) = 1
2 , i.e.,

(p(A))c = p(A). Therefore, e(A) = c(p(A), (p(A))c) = 1.
(EP3) For x ∈ X, if A(x) ≤ B(x) ≤ 1

2 , then A
c(x) ≥ Bc(x) ≥ 1

2 , thus A(x) ≤
B(x) ≤ 1

2 ≤ Bc(x) ≤ Ac(x). By E4 we have E(A(x), Ac(x)) ≤ E(B(x), Bc(x)).
By the properties of µ, we have 1− µ(E(A(x), Ac(x))) ≤ 1− µ(E(B(x), Bc(x))) ≤
µ(E(B(x), Bc(x))) ≤ µ(E(A(x), Ac(x))). This means that (p(A))c ⊆ (p(B))c ⊆
p(B) ⊆ p(A). By C3 of ∗-subsethood measure, we have c(p(A), (p(A))c) ≤ c(p(B),
(p(A))c) ≤ c(p(B), (p(B))c). That is to say, e(A) ≤ e(B). The case of A(x) ≥
B(x) ≥ 1

2 can be proved similarly.
(EP4) Since p(A) = p(Ac) and q(A) = q(Ac), then e(A) = c(p(A), (p(A))c) =
c(p(Ac), (p(Ac))c) = e(Ac).

Remark 16. In conditions of Proposition 38, let µ(x) = 1− 1
2x, E(x, y) = 1−|x− y|,

then we have
p(A)(x) = 1+|A(x)−Ac(x)|

2 = max(A(x), Ac(x)),

(p(A))c(x) = 1−|A(x)−Ac(x)|
2 = min(A(x), Ac(x)).

It means that p(A) = A∪Ac, p(A))c = A∩Ac. Thus the fuzzy entropy derived from
subsethood measure c can be expressed as c(A ∪ Ac, A ∩ Ac). In this sense, Kosko’s
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solution [23] about the relation between fuzzy entropy and subsethood measure can
be brought into line with our solution.

Example 19. Suppose µ(x) = 1− 1
2x, E(x, y) = ϕ−1( min(ϕ(x),ϕ(y))

max(ϕ(x),ϕ(y)) ), where ϕ is an
automorphism of the unit interval. Since E is a fuzzy equivalence satisfying E5 and
E9, we have

p(A)(x) = µ(E(A(x), Ac(x))) = 1− 1
2ϕ
−1( min(ϕ(A(x)), ϕ(1−A(x)))

max(ϕ(A(x)), ϕ(1−A(x))) ),

p(A))c(x) = 1− µ(E(A(x), Ac(x))) = 1
2ϕ
−1( min(ϕ(A(x)), ϕ(1−A(x)))

max(ϕ(A(x)), ϕ(1−A(x))) ).

Consider the following subsethood measure:

c6(A,B) =
∑n
i=1 B(xi)∑n

i=1 max(A(xi), B(xi))
.

It is shown that c6 is a ∗-subsethood measure. By Proposition 38, we obtain the
following fuzzy entropy:

e3(A) =
∑n
i=1 ϕ

−1( min(ϕ(A(xi)),ϕ(1−A(xi)))
max(ϕ(A(xi)),ϕ(1−A(xi))) )∑n

i=1 (2− ϕ−1( min(ϕ(A(xi)),ϕ(1−A(xi)))
max(ϕ(A(xi)),ϕ(1−A(xi))) ))

.

Let E be a fuzzy equivalence satisfying E5 and E9, µ and λ the functions defined as
above. For fuzzy sets A and B, we define k(A,B), l(A,B) ∈ F (X) for all x ∈ X,
k(A,B)(x) = µ(E(A(x),min(A(x), B(x)))) and l(A,B)(x) = λ(E(A(x),min(A(x),
B(x)))). Then we have the following conclusion.

Proposition 39. Given a discrete universe X = {x1, x2, . . . , xn}. Let e be a fuzzy
entropy, c a function defined for all A,B ∈ F (X) by c(A,B) = e(k(A,B)), then c is
a DI-subsethood measure.

Proof.
(C1) (Necessity) If c(A,B) = e(k(A,B)) = 1, by EP2, we have k(A,B) = [ 1

2 ]. This
means that µ(E(A(x),min(A(x), B(x)))) = 1

2 for all x ∈ X. Since µ is a strictly
decreasing function and µ(1) = 1

2 , then we have E(A(x),min(A(x), B(x))) = 1 for
all x ∈ X. As E satisfies E5 we have A(x) = min(A(x), B(x)), thus A(x) ≤ B(x)
for all x ≤ X.
(Sufficiency) If A ⊆ B, then k(A,B)(x) = µ(E(A(x), A(x))) = µ(1) = 1

2 , that is
to say, k(A,B) = [ 1

2 ]. Therefore, c(A,B) = e([ 1
2 ]) = 1.

(C2) (Necessity) If e(k(A,Ac)) = c(A,Ac) = 0, then by EP1, k(A,Ac) is nonfuzzy.
Therefore, k(A,Ac)(x) = 1 or 0. By the definition of k(A,B), we know k(A,B)(x) ≥
1
2 . Thus k(A,Ac)(x) = 1 for all x ∈ X. This means that µ(E(A(x),min(A(x), 1 −
A(x)))) = 1. By the properties of µ, we have E(A(x),min(A(x), 1− A(x))) = 0. If
A(x) ≤ 1

2 , then E(A(x),min(A(x), 1− A(x))) = E(A(x), A(x)) = 1 6= 0. Thus we
conclude that A(x) ≥ 1

2 for all x ∈ X. Thus E(A(x), 1 − A(x)) = 0. As E satisfies
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E9 we have A(x) = 1 for all x ∈ X.
(Sufficiency) If A = X, then k(A,Ac)(x) = µ(E(1, 0)) = µ(0) = 1. Thus
k(A,Ac) = X. Therefore, c(A,Ac) = e(k(A,Ac)) = e(X) = 0.

(C3) Since A ⊆ B implies A(x) ≤ B(x) for all x ∈ X, then for any fuzzy set
C, three cases will be considered depending on the position of C(x).
(1) If A(x) ≤ B(x) ≤ C(x), then k(B,C)(x) = µ(E(B(x), B(x))) = µ(1) = 1

2 ,
k(A,C)(x) = µ(E(A(x), A(x))) = µ(1) = 1

2 for x ∈ X. Thus k(B,C)(x) =
k(A,C)(x).
(2) If C(x) ≤ A(x) ≤ B(x), then k(B,C)(x) = µ(E(B(x), C(x))), k(A,C)(x) =
µ(E(A(x), C(x))) for x ∈ X. According to E4, we conclude that E(B(x), C(x)) ≤
E(A(x), C(x)). As µ is strictly decreasing we have µ(E(B(x), C(x))) ≥ µ(E(A(x),
C(x))). Thus k(B,C)(x) ≥ k(A,C)(x).
(3) If A(x) ≤ C(x) ≤ B(x), then k(B,C)(x) = µ(E(B(x), C(x))), k(A,C)(x) =
µ(E(A(x), A(x))) for x ∈ X. Since E(B(x), C(x)) ≤ E(A(x), A(x)) = 1. As µ is
strictly decreasing we have µ(E(B(x), C(x))) ≥ µ(E(A(x), A(x))). Thus k(B,C)(x)
≥ k(A,C)(x).
Hence we can conclude that k(B,C)(x) ≥ k(A,C)(x) ≥ 1

2 for all x ∈ X. Then
by EP3 we have e(k(B,C)) ≤ e(k(A,C)), i.e., c(B,C) ≤ c(A,C). The case of
c(C,A) ≤ c(C,B) whenever A ⊆ B can be proved similarly.

Example 20. In conditions of Proposition 39, let

µ(x) = 1− 1
2x, E(x, y) = ϕ−1( min(ϕ(x), ϕ(y))

max(ϕ(x), ϕ(y)) ),

where ϕ is an automorphism of the unit interval, then we can conclude that

k(A,B)(x) = 1− 1
2ϕ
−1(ϕ(min(A(x), B(x)))

ϕ(A(x)) ).

Consider the following fuzzy entropy:

e1(A) = 2
n

∑n

i=1
min(A(xi), 1−A(xi)).

By Proposition 39, we obtain the following DI-subsethood measure:

c7(A,B) = 1
n

∑n

i=1
ϕ−1(ϕ(min(A(xi), B(xi)))

ϕ(A(xi))
).

Proposition 40. Given a discrete universe X = {x1, x2, . . . , xn}. Let e be a fuzzy
entropy, c a function defined for all A,B ∈ F (X) by c(A,B) = e(l(A,B)), then c is
a DI-subsethood measure.

Proof. It can be proved in the same manner with Proposition 39.

Corollary 3. Note that the subsethood measures constructed by fuzzy entropy in the
above-mentioned propositions are also VY-subsethood measures. Therefore, they are
also ∗-subsethood measures.
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