
CHAPTER 4

Pattern Classification using Generalized Recurrent
Exponential Fuzzy Associative Memories

Marcos Eduardo Valle and Aline Cristina de Souza

Generalized recurrent exponential fuzzy associative memories (GRE-FAMs) are bio-
logically inspired models designed for the storage and recall of fuzzy sets. They can be
viewed as a recurrent multilayer neural network that employs a fuzzy similarity measure
in its first hidden layer. In this chapter, we provide theoretical results concerning the
storage capacity and noise tolerance of a single-step GRE-FAM. Furthermore, we de-
scribe how a GRE-FAM model can be applied for pattern classification. Computational
experiments show that the accuracy of certain GRE-FAM classifiers is competitive with
some well-known classifiers from the literature.
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4.1 Introduction
Associative memories (AMs) are mathematical models inspired by the human brain
ability to store and recall information by means of associations [3, 15, 17, 23]. They
are designed for the storage of a finite set of items called fundamental memories.
Furthermore, an AM is expected to retrieve a stored information even upon the pre-
sentation of an incomplete or noisy item. Applications of AM models include pattern
classification and recognition [13, 39, 49, 50], optimization [19], computer vision and
image retrieval [5, 7, 37], prediction [38, 41, 42], and control [24, 25].
An AM model designed for the storage and recall of fuzzy sets is called fuzzy

associative memory (FAM) [25, 42]. Precisely, a FAM is designed for the storage
of associations (A1, B1), (A2, B2), . . . , (Ap, Bp), where Aξ and Bξ are fuzzy sets for
all ξ = 1, . . . , p. Afterward, the FAM model is expected to retrieve a certain Bξ in
response to the presentation of a partial or noisy version Ãξ of Aξ.
Research on FAM models originated in the early 1990s by Kosko [24, 25]. Generally

speaking, Kosko’s FAM stores a pair (Aξ, Bξ) in a matrix using either the correlation-
minimum or the correlation-product encoding scheme. Despite successful applications
of Kosko’s FAMs to problems such as backing up a truck and trailer [24], target tracking
[25], and voice cell control in ATM networks [32], they suffer from an extremely low
storage capacity due to crosstalk between the stored items [9, 42].
To overcome the limitations of Kosko’s FAMs, many researchers have developed

FAM models with high storage capacity and improved noise tolerance. For instance,
Chung and Lee generalized the matrix-based FAM models of Kosko by considering
general maximum of triangular norm (max-T) compositions [9]. A recording recipe,
called implicative fuzzy learning, has been devised for the storage of as many items
as desired in a matrix-based FAM model [21, 29, 40]. A matrix-based FAM model
synthesized using the implicative fuzzy learning is called implicative fuzzy associative
memories (IFAM) [40]. Recently, Perfilieva and Vajgl characterized the noise tolerance
of IFAMs using the notion of fuzzy preorder [33, 34]. Also, Bui et al. improved the
noise tolerance of a certain IFAM using concepts from mathematical morphology [7].
Besides the active research on matrix-based FAMs, there is an increasing interest

on non-distributive FAM models such as the Θ-FAMs introduced recently by Esmi et
al. [12]. In general terms, a Θ-FAM yields the union ∪γ∈ΓB

γ , where Γ ⊆ {1, . . . , p}
is the set of the indexes that maximize a certain function of the input fuzzy set.
For instance, an SM-FAM is obtained by considering the indexes that maximize the
similarity measure between the fundamental memory Aξ and the input X.
The generalized recurrent exponential fuzzy associative memories (GRE-FAMs), in-

troduced recently by Souza et al., also belong to the class of non-distributive models
[10]. Briefly, the GRE-FAM models have been derived from our previous recurrent ex-
ponential fuzzy associative memory by adding a hidden layer geared to avoid crosstalk
between the stored items [44]. Like the famous Hopfield network [16, 18], GRE-FAMs
only implement autoassociative memories, that is, they are designed for the storage
and recall of fuzzy sets A1, . . . , Ap. Furthermore, they are recurrent models, that is,
they produce a sequence of fuzzy sets X0, X1, . . . which presumably converges to the
desired output. Indeed, the output of a single-step GRE-FAM can be made as close as
desired to a certain combination of the fuzzy sets A1, . . . , Ap which are the most sim-
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ilar to the input. Computational experiments revealed that the GRE-FAM models can
be effectively used for reconstruction of noisy gray-scale images [10]. In this chapter,
we successfully apply GRE-FAMs to pattern classification tasks.
The chapter is organized as follows. The next section reviews some basic concepts

on fuzzy sets and similarity measures. Section 4.3 presents the GRE-FAM models.
This section also contains some theoretical results concerning the storage capacity
and retrieval capability of the GRE-FAMs. The application of the GRE-FAMs for
pattern classification task is described in Section 4.4. Section 4.5 is concerned with
the application of the GRE-FAM classifier to several benchmark classification problems.
The chapter finishes with some concluding remarks in Section 4.6.

4.2 Fuzzy Sets and Similarity Measures
Let us begin by recalling some well-established basic concepts that will be used through-
out the text. First of all, a fuzzy set A on a universe of discourse U is identified by
its membership function A : U → [0, 1]. Hence, A(u) denotes the degree to which
the element u ∈ U belongs to the fuzzy set A. The family of all fuzzy subsets of U is
denoted by F(U). Similarly, P(U) represents the power set of U .
In this chapter, a fuzzy set A on a finite universe of discourse U = {u1, u2, . . . , un} is

identified by a column vector [a1, a2, . . . , an]T , where aj = A(uj) for all j = 1, . . . , n.
Hence, F({u1, u2, . . . , un}) corresponds to the hypercube [0, 1]n.
As usual, we say that A ∈ F(U) is a subset of B ∈ F(U), and write A ⊆ B, if

A(u) ≤ B(u) for all u ∈ U . Also, Ā denotes the standard complement of a fuzzy set
A, that is, Ā(u) = 1−A(u) for all u ∈ U .
A similarity measure, also known as equality index or fuzzy equivalence, is a function

that associates to each pair of fuzzy sets a real number in the unity interval [0, 1],
representing the degree to which those fuzzy sets are equal [11, 22]. Applications
of similarity measures include fuzzy neural networks [4, 12], fuzzy clustering [47],
linguistic approximation [51], rule base simplification [36], fuzzy reasoning [43], and
image processing [6, 8].
There is a vast literature on similarity measure. Also, this concept is interpreted in

different ways depending on the context. In the following, we consider the normalized
version of the axiomatic definition provided by Xuecheng [46]:

Definition 1 (Similarity Measure). A similarity measure is a function S : F(U) ×
F(U)→ [0, 1] which satisfies the following properties, for any fuzzy sets A,B,C,D ∈
F(U):

1. S(A,B) = S(B,A).

2. S(A,A) = 1.

3. If A ⊆ B ⊆ C ⊆ D, then S(A,D) ≤ S(B,C).

4. S(A, Ā) = 0, for all crisp set A ∈ P(U).

We say that S is a strong similarity measure if S(A,B) = 1 implies A = B.
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Definition 2. Let A = [a1, a2, . . . , an]T and B = [b1, b2, . . . , bn]T be two fuzzy
sets on U = {u1, · · · , un}. The following presents two strong similarity measures
[6, 11, 30, 51].

1. Gregson similarity measure:

SG (A,B) =
∑n
j=1 (aj ∧ bj)∑n
j=1 (aj ∨ bj)

, (4.1)

where the symbols “∧” and “∨” denote respectively the minimum and maximum
operations.

2. Complement of the Relative Hamming Distance:

SH (A,B) = 1− 1
n

n∑
j=1
|aj − bj | . (4.2)

Example 1. Let A = [0.4, 0.5]T and B = [0.6, 0.4]T be fuzzy sets on F({u1, u2}).
In this case, we obtain the similarity degrees

SG(A,B) = 0.73 and SH(A,B) = 0.85.

Moreover, Fig.(4.1) shows the fuzzy sets A and B as well as the geometric regions
corresponding to the families

FG = {X ∈ F ({u1, u2}) : SG(A,X) ≥ 0.8} , (4.3)

and

FH = {X ∈ F ({u1, u2}) : SH(A,X) ≥ 0.8} . (4.4)

Note that FH is a square while FG is a trapezoid. Also, FG ⊆ FH . In particular,
we have B ∈ FH but B 6∈ FG.
Remark 1. Gregson similarity measure is an example of a similarity measure based on
intersection, union, and cardinality. Precisely, we have

SG (A,B) = Card (A ∩B)
Card (A ∪B) , (4.5)

where “∩” and “∪” denote the classical intersection and union of fuzzy sets and the
cardinality of a fuzzy set is the sum of its membership degrees.
The similarity measure SH is a particular case of the complement of a relative

distance Sp given by

Sp (A,B) = 1− dp (A,B)
dp (∅, U) (4.6)

where dp denotes the Lp distance of order p ≥ 1. The denominator dp(∅, U), which
corresponds to the largest distance between two fuzzy sets, ensures Sp(A,B) ∈ [0, 1].
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Figure 4.1: Geometry of the families FG (blue) and FH (red) given respectively by
Eq.(4.3) and Eq.(4.4).

4.3 Generalized Recurrent Exponential Fuzzy
Associative Memories

Generalized recurrent exponential fuzzy associative memories (GRE-FAMs), introduced
recently by Souza et al. [10], are high-capacity associative memory models designed
for the storage of a finite family A = {A1, A2, · · · , Ap} ⊆ F (U) of fuzzy sets. We
shall refer to Aξ ∈ A as a fundamental memory. A GRE-FAM model is used to retrieve
a memorized fuzzy set under presentation of an input fuzzy set X0 ∈ F (U). Formally,
a GRE-FAM is defined as follows:

Definition 3 (GRE-FAM). Consider a finite family of fundamental memories A =
{A1, A2, · · · , Ap} ⊆ F(U), a real number α > 0, and a similarity measure S :
F(U) × F(U) → [0, 1]. Furthermore, let G = (gνµ) be a real-valued matrix of size
p× p. Given an initial fuzzy set X0 ∈ F(U), a GRE-FAM defines a sequence {Xt}t≥0
of fuzzy sets as follows for all u ∈ U and t = 0, 1, . . .:

Xt+1 (u) = ϕ

(∑p
ξ=1

∑p
µ=1A

ξ (u) gξµeαS(Aµ,Xt)∑p
η=1

∑p
µ=1 gηµe

αS(Aµ,Xt)

)
, (4.7)

where ϕ : R→ [0, 1] is the piece-wise linear function given by

ϕ (x) = 0 ∨ (1 ∧ x) . (4.8)

Equivalently, the fuzzy set Xt+1 produced by a GRE-FAM at iteration t ≥ 0 is
defined by the following equations:

uµt = eαS(Aµ,Xt), ∀µ = 1, . . . , p, (4.9)

vξt =
p∑

µ=1
gξµuµt, ∀ξ = 1, . . . , p, (4.10)

wξt = 1∑p
η=1 vηt

vξt, ∀ξ = 1, . . . , p, (4.11)
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Figure 4.2: Block diagram of a GRE-FAM.

Xt+1(u) = ϕ

 p∑
ξ=1

wξtA
ξ(u)

 , ∀u ∈ U. (4.12)

Therefore, a GRE-FAM can be interpreted as the fully connected four-layer1 recurrent
neural network shown in Fig.(4.2). In each node of the first hidden layer, an exponential
function is applied to the similarity between the current state Xt and the fundamental
memory Aξ, for ξ = 1, . . . , p. The second hidden layer consists of linear neurons. The
nodes in the third layer simply normalize the output of the previous layer. Finally,
the output layer computes a weighted sum of the fundamental memories A1, . . . , Ap

followed by a piece-wise linear function ϕ which ensures that Xt+1(u) ∈ [0, 1] for all
u ∈ U .
The following example illustrates the recall phase of a GRE-FAM based on the

complement of the relative Hamming distance SH .

Example 2. Consider the fundamental memory set A = {A1, A2, . . . , A8} ∈ [0, 1]2
formed by the fuzzy sets

A1 =
[
0.1
0.5

]
, A2 =

[
0.2
0.4

]
, A3 =

[
0.2
0.5

]
, A4 =

[
0.2
0.6

]
, (4.13)

A5 =
[
0.4
0.2

]
, A6 =

[
0.4
0.8

]
, A7 =

[
0.6
0.4

]
, A8 =

[
0.6
0.6

]
, (4.14)

the similarity measure SH , the parameter α = 1, and let G ∈ R8×8 be the matrix

1 We would like to point out that the network topology presented in this work has an additional layer
compared to the topology in [10]. As we shall see in Section 4.4, the additional layer plays an
important role in pattern classification problems.
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defined by

G =



3.87 0.00 −3.68 0.00 0.00 0.00 0.00 0.00
0.00 8.30 −3.68 −3.82 −0.68 0.19 −4.73 4.47
−3.68 −3.68 10.86 −3.68 0.00 0.00 0.00 0.00
0.00 −3.82 −3.68 8.30 0.19 −0.68 4.47 −4.73
0.00 −0.68 0.00 0.19 1.52 −0.43 −0.68 0.19
0.00 0.19 0.00 −0.68 −0.43 1.52 0.19 −0.68
0.00 −4.73 0.00 4.47 −0.68 0.19 6.46 −5.66
0.00 4.47 0.00 −4.73 0.19 −0.68 −5.66 6.46


. (4.15)

Assume that the fuzzy set X0 = [0.4, 0.5]T ∈ [0, 1]2 is presented as input to the
GRE-FAM model. Figure 4.3 shows the fundamental memories A1, . . . , A8, marked
by either a square or a triangle, as well as the input fuzzy set X0, marked by a black
filled circle. Note that, since SH is close related to the L1-distance (also known as
the taxicab distance), A3 is the fundamental memory most similar to X0. Indeed, we
have SH(A3, X0) = 0.9 while SH(Aµ, X0) = 0.85 for all µ 6= 3. Now, the first hidden
layer produces the vector u0 = [u1,0, . . . , u8,0]T given by

u0 =
[
2.34 2.34 2.46 2.34 2.34 2.34 2.34 2.34

]T
. (4.16)

From Eq.(4.10) and Eq.(4.11), the outputs of the second and third hidden layers can
be arranged in the vectors

v0 = Gu0 =
[
0 −0.32 0.90 −0.32 0.25 0.25 0.13 0.13

]T
, (4.17)

w0 = v0∑8
η=1 vη0

=
[
0 −0.30 0.87 −0.30 0.24 0.24 0.13 0.13

]T
, (4.18)

respectively. Note that the sum of the weights wξt equals 1, that is,
∑8
ξ=1 wξ0 = 1.

Moreover, although the components of u0 are all positive, the vector v0 = Gu0
contains negative entries because of G. Consequently, some of the weights wξt’s
are also negative. From Eq.(4.12), we finish the first iteration with the fuzzy set
X1 = [0.4, 0.5]T . Since X1 = X0, we have Xt = [0.4, 0.5] for all t ≥ 0. In other
words, the fuzzy set X0 = [0.4, 0, 5] is a fixed point of the GRE-FAM based on SH .
Note that a GRE-FAM model is specified by the fundamental memory set A, a

similarity measure S, the parameter α > 0, and the real-valued matrix G ∈ Rp×p.
We usually assume that A is given a priori. The similarity measure S, as well as the
parameter α > 0, should be determined by the nature (or geometry) of the problem we
deal with. Finally, the matrix G can be computed according to the following theorem,
which have been stated without proof on [10]:
Theorem 1. Given a family of fundamental memories A = {A1, A2, · · · , Ap} ⊆
F(U), a parameter α > 0, and a similarity measure S : F(U)×F(U)→ [0, 1], define
the matrix C = (cνµ) ∈ Rp×p as follows:

cvµ = eαS(Av,Aµ), ∀v, µ = 1, ..., p. (4.19)

If C is invertible, then any fundamental memory from the family A is a fixed point of
the GRE-FAM with G = C−1.
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Figure 4.3: Fundamental memories A1, . . . , A8 and the input fuzzy set X0, marked
by a black filled circle. In a classification task, the fuzzy sets A1, . . . , A4,
marked by red squares, belong to class 0 while the fuzzy sets A5, . . . , A8,
marked by blue triangle, belong to class 1.

Proof. Suppose that the matrix C given by Eq.(4.19) is invertible. If G = C−1, then
the following identity holds true for all indexes ξ, ν ∈ {1, . . . , p}:

p∑
µ=1

gξµe
αS(Aµ,Aν) = G(ξ, :)C(:, ν) = δξν ,

where G(ξ, :) denotes the ξ-th row of the matrix G, C(:, ν) denotes the ν-th column
of the matrix C, and δξ,ν is the Kronecker’s delta defined by

δξν =
{

1, ξ = ν,

0, ξ 6= ν.

Now, if a fundamental memory X0 = Aν , with ν ∈ {1, . . . , p}, is presented to the
GRE-FAM, then the following identities hold all u ∈ U :

X1(u) = ϕ

(∑p
ξ=1

∑p
µ=1A

ξ(u)gξµeαS(Aµ,X0)∑p
η=1

∑p
µ=1 gηµe

αS(Aµ,X0)

)

= ϕ

∑p
ξ=1A

ξ(u)
[∑p

µ=1 gξµe
αS(Aµ,Aν)

]
∑p
η=1

[∑p
µ=1 gηµe

αS(Aµ,Aν)
]


= ϕ

(∑p
ξ=1A

ξ(u)δξν∑p
η=1 δην

)
= ϕ (Aν(u)) = Aν(u).

Therefore, Aν is a fixed point of the GRE-FAM given by Eq.(4.7) with G = C−1.
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In words, Theorem 1 prescribes a matrix G such that any fundamental memory
Aξ is a fixed point of the GRE-FAM. Moreover, in this case, the linear neurons in
the second hidden layer are used to mitigate the crosstalk between the fundamental
memories. From now on, we shall assume that the matrix G is computed according
to Theorem 1. In case C is not invertible, we define G = C†, where C† denotes the
pseudo-inverse of C.
The following example reveals that the matrix G given by Eq.(4.15) have been

determined according to Theorem 1.

Example 3. Consider the fundamental memory set A = {A1, . . . , A8} formed by the
fuzzy sets given by Eq.(4.13) and Eq.(4.14). Also, let α = 1 and consider the similarity
measure SH defined by Eq.(4.2). In this case, Eq.(4.19) yields the matrix

C =



2.72 2.46 2.59 2.46 2.01 2.01 2.01 2.01
2.46 2.72 2.59 2.46 2.23 2.01 2.23 2.01
2.59 2.59 2.72 2.59 2.12 2.12 2.12 2.12
2.46 2.46 2.59 2.72 2.01 2.23 2.01 2.23
2.01 2.23 2.12 2.01 2.72 2.01 2.23 2.01
2.01 2.01 2.12 2.23 2.01 2.72 2.01 2.23
2.01 2.23 2.12 2.01 2.23 2.01 2.72 2.46
2.01 2.01 2.12 2.23 2.01 2.23 2.46 2.72


(4.20)

For instance, the entry c13 = eαSH(A1,A3) = eα0.95 = 2.59 is the exponential of the
similarity between A1 and A3. Note that the matrix C is symmetric with diagonal
eα = 2.72. The inverse of C is the the matrix G = C−1 given by Eq.(4.15), which is
also symmetric.

Let us now estimate the number of operations required by a GRE-FAM based on
Theorem 1. First, assume that an evaluation of the similarity measure S demands
O(n) operations. Now, the matrix C given by Eq.(4.19) requires p2 evaluations of
the similarity measure S. Also, O(p3) operations are needed for the computation of
G = C−1. Therefore, the cost of designing a GRE-FAM is O(np2 + p3). Afterward,
each step of a GRE-FAM model requires O(pn+ p2) operations.
Let us conclude this section by turning our attention to the output X1 produced by a

single-step GRE-FAM with G prescribed by Theorem 1. The following theorem shows
that X1 converges point-wise to an affine combination of the fundamental memories
which have the highest similarity (in terms of S) with the input X0 as the parameter
α > 0 tends to infinity [10].

Theorem 2. Consider a family of fundamental memories A = {A1, · · · , Ap} ⊆ F(U)
and let S denote a strong similarity measure. Suppose that the matrix C given by
Eq.(4.19) is invertible for any α > 0. Given an initial fuzzy set X0 ∈ F(U), let
Γ ⊆ {1, . . . , p} denote the set of the indexes of the fundamental memories which are
the most similar to the input X0 in terms of S. Formally, we have

Γ =
{
γ : S (Aγ , X0) ≥ S

(
Aξ, X0

)
,∀ξ = 1, ..., p

}
. (4.21)

If X1 ∈ F (U), given by Eq.(4.7) with t = 0, denotes the output of the single-step
GRE-FAM, then
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lim
α→∞

X1 (u) = 1
Card (Γ)

∑
γ∈Γ

Aγ (u) , ∀u ∈ U (4.22)

Furthermore, the weight wξ0 given by Eq.(4.11), which correspond to the output of the
ξth neuron of the third hidden layer, satisfies the following equation for all ξ = 1, . . . , p:

lim
α→∞

wξ0 =
{

1
Card(Γ) , ξ ∈ Γ,
0, otherwise.

(4.23)

Proof. Let σ = maxξ=1:p{S(Aξ, X0)} denote the maximum of the similarity between
the input fuzzy set X0 and the fundamental memories A1, · · · , Ap. The output of a
single-step GRE-FAM is given by

X1 (u) = ϕ

 p∑
ξ=1

wξ0A
ξ (u)

 , (4.24)

where wξ0, derived from Eq.(4.9)–Eq.(4.11), satisfies

wξ0 =
∑p
µ=1 gξµe

αS(Aµ,X0)∑p
η=1

∑p
µ=1 gηµe

αS(Aµ,X0) , ∀ξ = 1, ..., p. (4.25)

Multiplying both the numerator and the denominator of Eq.(4.25) by e−ασ and break-
ing up the sums, we obtain:

wξ0 =
∑
γ∈Γ gξγ +

∑
µ/∈Γ gξµe

α(S(Aµ,X0)−σ)∑p
η=1

∑
γ∈Γ gηγ +

∑p
η=1

∑
µ6∈Γ gηµe

α(S(Aµ,X0)−σ) (4.26)

Now, the matrix C given by Eq.(4.19) can be written as C = eαD(α), where the
entries of D(α) are dνµ(α) = eα(S(Aν ,Aµ)−1). Moreover, G = C−1 = e−αH(α),
where H(α) = D−1(α). Hence, by factoring e−α, we obtain from Eq.(4.26):

wξ0 =
∑
γ∈Γ hξγ (α) +

∑
µ/∈Γ hξµ (α) eα(S(Aµ,X0)−σ)∑p

η=1
∑
γ∈Γ hηγ (α) +

∑p
η=1

∑
µ6∈Γ hηµ (α) eα(S(Aµ,X0)−σ) . (4.27)

Recalling that S(Aµ, X0)−σ < 0 for all µ /∈ Γ, the second sum in both numerator and
denominator tends to 0 as α→∞. Moreover, since S is a strong similarity measure,
limα→∞ hνµ(α) = δνµ, where hνµ(α) is the (ν, µ)-entry of H(α) and δνµ denotes the
Kronecker’s delta. Hence,

lim
α→∞

wξ0 =
∑
γ∈Γ δξγ∑p

η=1
∑
γ∈Γ δηγ

=
{

1
Card(Γ) , ξ ∈ Γ,
0, otherwise.

(4.28)

Since ϕ is continuous and ϕ(x) = x for all x ∈ [0, 1], we conclude that
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lim
α→∞

X1(u) = lim
α→∞

ϕ

 p∑
ξ=1

wξ0A
ξ(u)

 = ϕ

 p∑
ξ=1

[
lim
α→∞

wξ0

]
Aξ(u)

(4.29)
= ϕ

∑
ξ∈Γ

1
Card(Γ)A

ξ(u)

 = 1
Card(Γ)

∑
γ∈Γ

Aγ(u). (4.30)

for all u ∈ U .

The following corollary shows that, under mild conditions, the output X1 of a single-
step GRE-FAM converges point-wise to the fundamental memory Aγ which is the most
similar to the input X0.

Corollary 1. Consider a family of fundamental memories A = {A1, · · · , Ap} ⊆ F(U)
and let S denote a strong similarity measure. Suppose that the matrix C given by
Eq.(4.19) is invertible for any α > 0. Given an initial fuzzy set X0 ∈ F(U), if the
inequality S(Aγ , X0) > S(Aξ, X0) holds true for all ξ 6= γ, with ξ, γ ∈ {1, . . . , p},
then the output of the single-step GRE-FAM given by Eq.(4.7) with t = 0 satisfies

lim
α→∞

X1 (u) = Aγ , ∀u ∈ U. (4.31)

Moreover, the weight wξ0 given by Eq.(4.11) converges to δξγ as α tends to infinity,
that is,

lim
α→∞

wξ0 =
{

1, ξ = γ,

0, otherwise.
(4.32)

Example 4. Consider the fundamental memory set A = {A1, . . . , A8} given by
Eq.(4.13) and Eq.(4.14), the strong similarity measure SH , and let X0 = [0.4, 0.5]T
be the input fuzzy set. Note that the fundamental memory most similar to X0 is A3.
Also, recall from Example 2 that the output of the single-step GRE-FAM based on SH
with α = 1 is X1 = [0.4, 0.5]. Therefore, for α = 1, the Chebyshev distance between
X1 and A3 is ∥∥A3 −X1

∥∥
∞ = max

u∈U

∣∣A3 (u)−X0 (u)
∣∣ = 0.2. (4.33)

Now, Fig.((4.4)) shows the distance ‖A3 −X1‖∞ by the parameter α. Note that the
Chebyshev distance decreases by increasing α. In fact, since U = {u1, u2} is finite,
Corollary 1 asserts that limα→∞ ‖A3 −X1‖∞ = 0.

From Corollary 1, we conjecture that the basin of attraction of Aγ is the region

Rγ =
{
X ∈ F (U) : S(Aγ , X) > S(Aξ, X),∀ξ 6= γ

}
, (4.34)

when α is sufficiently large. In other words, Rγ corresponds to the family of fuzzy
sets which are more similar to Aγ than any other fundamental memory Aξ, ξ 6= γ.
At this point, recall that the pattern recalled by an autoassociative similarity measure

FAM (SM-FAM) of Esmi et al. under presentation of X ∈ F (U) is the fuzzy set
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Figure 4.4: Chebyshev distance between the fundamental memory A3 and the output
X1 of a single-step GRE-FAM model by the parameter α.

Y =
⋃
γ∈Γ

Aγ , (4.35)

where Γ is the set of indexes given by Eq.(4.21) [12]. Hence, an autoassociative SM-
FAM differs from a single-step GRE-FAM with a large parameter α in respect to how
the fuzzy sets Aγ , γ ∈ Γ, are combined to produce the output. Furthermore, both
FAM models probably coincide if Γ has an unique element and α is sufficiently large.
We would like to point out, however, that the parameter α cannot be made in-

definitely large in many practical situations. For instance, due to overflow, we must
roughly consider α ≤ 700 on a machine that supports IEEE floating point arithmetic.
If the parameter α is not sufficiently large, the fuzzy set X1 produced by a GRE-FAM
may differ significantly from the output of an autoassociative SM-FAM. As we shall
see in Section 4.5, this can be an advantage in some pattern classification problems.

4.4 Pattern Classification Using GRE-FAMs
In this section, we show how a single-step GRE-FAMs can be applied for pattern
classification tasks. Formally, assume that we have a family of labeled fuzzy sets

AL =
{(
Aξ, `ξ

)
: ξ = 1, ..., p

}
⊆ F (U)× L, (4.36)

where L is a finite set of labels and Aξ are distinct non-empty fuzzy sets on U . We
refer to AL as the training set. In a pattern classification task, the goal is to attribute
a label ` ∈ L to a given (unlabeled) input fuzzy set X ∈ F (U). Specifically, based
on the training set AL, we synthesize a mapping C : F (U)→ L, called classifier.
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Example 5 (Fuzzy Nearest Neighbor Classifier). A fuzzy version of the popular nearest
neighbor classifier assigns to X ∈ F (U) the label of the most similar fuzzy set Aξ,
for ξ = 1, . . . , p. In mathematical terms, a fuzzy nearest neighbor (fNN) classifier,
denoted by CfNN , is defined as follows using a fuzzy similarity measure S:

CfNN (X) = `η, where η satisfies S(Aη, X) > S(Aξ, X),∀ξ = 1, ..., p. (4.37)

Note that, if S is a strong similarity measure, the equation CfNN (Aξ) = `ξ holds true
for all ξ = 1, . . . , p.

Example 6. Consider the family of labeled fuzzy sets AL = {(Aξ, `ξ) : ξ = 1, . . . , 8}
in which the fuzzy sets A1, A2, . . . , A8 are given by Eq.(4.13) and Eq.(4.14) and the
class labels are

`1 = `2 = `3 = `4 = 0 and `5=`6=`7=`8=1. (4.38)
Also, let X = X0 = [0.4, 0.5]T be the input fuzzy set. Recall that Fig.(4.3) shows
AL as well as the input fuzzy set X0. Here, the fuzzy sets labeled as 0 are marked
by a red square while the fuzzy sets from class 1 are marked by blue triangles. From
Example 2, we know that A3 is the fundamental memory most similar to the input X0
with respect to SH . Therefore, the fNN based on SH yields CfNN (X0) = `3 = 0. In
other words, the fNN classifier assign to X0 the class 0. We would like to point out
that the SM-FAM classifier of Esmi et al. [12], based on the similarity measure SH ,
also attributes to X the class label 0.

As we will see, the GRE-FAM classifier, denoted by Cg, is closely related to the
fNN classifier. Furthermore, Cg can also be viewed as a sparse representation (SR)
classifier [45]. Generally speaking, a SR classifier relies on the following hypothesis
[45]: A sample Y from class i can be approximately written as a linear combination
of the training data from class i, that is,

Y (u) ≈
∑
ξ:`ξ=i

αξA
ξ (u) , ∀u ∈ U. (4.39)

Alternatively, Y can be expressed using all training data A1, . . . , Ap as follows where
αξ = 0 for all ξ such that `ξ 6= i:

Y (u) ≈
p∑
ξ=1

αξA
ξ (u) , ∀u ∈ U. (4.40)

In other words, the components of the vector α = [α1, α2, . . . , αp]T ∈ Rp are zero for
all indexes which are not associated to class i – hence the name sparse representation
classifier.
Now, as an associative memory model, a GRE-FAM is expected to remove noise

from a corrupted input. As a consequence, if X corresponds to a corrupted version of
a sample from class i ∈ L, then the output X1 of a single-step GRE-FAM should also
belong to class i. On one hand, according to Eq.(4.12), the output X1 satisfies

X1 (u) = ϕ

 p∑
ξ=1

wξ0A
ξ (u)

 , ∀u ∈ U. (4.41)
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On the other hand, we expect from Eq.(4.40) that

X1 (u) ≈
p∑
ξ=1

αξA
ξ (u) , ∀u ∈ U, (4.42)

where αξ = 0 for all ξ such that `ξ 6= i. Apart from the piece-wise linear activation
function ϕ, which can be ignored if

∑p
ξ=1 wξA

ξ(u) ∈ [0, 1], Eq.(4.41) and Eq.(4.42)
suggest that the weights w10, w20, . . . , wp0 are sparse. Moreover, we propose to com-
pute the coefficients αξ in Eq.(4.42) by means of the equation

αξ = wξ0χi (`ξ) , ∀ξ = 1, ..., p, (4.43)

where χi : L → {0, 1}, for i ∈ L, is the indicator function defined by

χi (x) =
{

1, x = i,

0, otherwise.
(4.44)

Note that Eq.(4.43) implies αξ = wξ0 if `ξ = i and αξ = 0 otherwise. Concluding, if
the input X belongs to class i, we guess that

X1 (u) ≈
p∑
ξ=1

wξ0χi (`ξ)Aξ (u) , ∀u ∈ U, (4.45)

where X1(u) and the weights wξ0’s, given respectively by Eq.(4.12) and Eq.(4.11),
correspond to the outputs of the fourth and third hidden layer of a single-step GRE-
FAM. Finally, since we do not know a priori which class the input belongs, we assign
to X the class ` that minimizes the distance between X1 and the linear combination∑p
ξ=1 wξ0χ`(`ξ)Aξ. To be specific, we attribute to X a class label ` ∈ L such that

d2

X1,

p∑
ξ=1

wξ0χ` (`ξ)Aξ
 ≤ d2

X1,

p∑
ξ=1

wξ0χi (`ξ)Aξ
 , ∀i ∈ L. (4.46)

where d2 denotes the L2-distance. Algorithm 4.1 summarizes a GRE-FAM classifier.
Let us discuss briefly the computational complexity of the GRE-FAM classifier de-

scribed by Algorithm 4.1. For simplicity, consider the usual situation in which the
number of samples p is much greater than both the dimension n of the data and
the number c = Card(L) of classes, i.e., n << p and c << p. In this case, O(p3)
operations are required for the computation of the matrix G, which should be either
provided by the user or computed in steps 1 and 2 of Algorithm 4.1. The remaining
steps, which corresponds to the recall phase of the GRE-FAM plus c evaluations of
the distance d2, require all together O(p2) operations. Since the matrix G need to be
computed only once, we conclude that O(p3) operations are performed to synthesize
(training phase) a GRE-FAM classifier Cg : F (U) → L while an evaluation of Cg
demands O(p2) operations.
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Algorithm 4.1 GRE-FAM Classifier
Data: Training set AL = {(Aξ, `ξ) : ξ = 1, . . . , p} ⊆ F (U) × L, a fuzzy similarity

measure S, and the parameter α > 0;
Optionally, provide the matrix G ∈ Rp×p determined according to Theorem 1.
Input: Input X ∈ F (U).
Output: Class label ` ∈ L.

1 if the matrix G was not provided then
2 compute it from A1, . . . , Ap according to Theorem 1;
3 Determine the weight wξ0, for ξ = 1, . . . , p, using Eq.(4.11);
4 Define the recalled fuzzy set X1 ∈ F (U) by means of Eq.(4.12);

5 Choose ` ∈ L and compute η` = d2

(
X1,

p∑
ξ=1

wξ0χ`(`ξ)Aξ
)
;

6 for all i ∈ L \ {`} do
7 Compute

ηi = d2

X1,

p∑
ξ=1

wξ0χi(`ξ)Aξ
 ; (4.47)

if ηi < η` then
8 Update ` = i and η` = ηi;

Example 7. Again, consider the labeled family AL = {(Aξ, `ξ) : ξ = 1, . . . , 8}, where
the fuzzy sets and labels are given by Eq.(4.13), Eq.(4.14), and Eq.(4.38). Also, as
shown in Fig.(4.3), let X0 = [0.4, 0.5]T be the input fuzzy set. From Example 2, we
know that the single-step GRE-FAM based on SH yields X1 = [0.4, 0.5]T as output.
Moreover, from Eq.(4.18) and Algorithm 4.1, we obtain

η0 = d2

(
X1,

p∑
ξ=1

wξ0χ0(`ξ)Aξ
)

(4.48)

= d2

(
X1, w1,0A

1 + w2,0A
2 + w3,0A

3 + w4,0A
4

)
(4.49)

= d2

([
0.4
0.5

]
,−0.3

[
0.2
0.4

]
+ 0.87

[
0.2
0.5

]
− 0.3

[
0.2
0.6

])
(4.50)

= d2

([
0.4
0.5

]
,

[
0.05
0.13

])
= 0.51. (4.51)

Note that, despite the large weight w3,0 = 0.87, the linear combination
p∑
ξ=1

wξ0χ0(`ξ)Aξ

is neither similar to X1 nor A3 because of the negative weights w2,0 = w3,0 = −0.3.
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Figure 4.5: Values of ηi given by Eq.(4.47) by the parameter α of a GRE-FAM classifier.

Analogously, we have

η1 = d2
(
X1, w5,0A

5 + w6,0A
6 + w7,0A

7 + w8,0A
8) = 0.14. (4.52)

Since η1 < η0, the GRE-FAM classifier attributes toX0 the class label 1, i.e., Cg(X0) =
1. Finally, Fig.(4.5) depicts the values of η0 and η1 by the parameter α. Note that
η1 < η0 and, thus, Cg(X0) = 1 for 1 ≤ α ≤ 32. Similarly, we have Cg(X0) = 0
for α > 32. Therefore, for α sufficiently large, the GRE-FAM classifier Cg coincide
with both fNN and SM-FAM classifiers. We discuss the relationship between these
classifiers after Remark 2.

Remark 2. Recall from Example 6 that the fNN and SM-FAM classifiers attributed to
X0 the class 0, which is the class label of the most similar fundamental memory. In
contrast, the GRE-FAM classifier assigned to X0 the class label 1. Although there is no
correct solution for this classification problem, we suggest the following explanation for
the solution provided by the GRE-FAM classifier. Notice in Fig.(4.3) that the fuzzy sets
A1, . . . , A4 from class 0 are more concentrated than the fuzzy sets A5, . . . , A8 from
class 1. Thus, since the fuzzy sets from class 0 are clustered about A3 = [0.2, 0.5]T ,
we guess that X0 does not belong to class 0. The concentration of the fundamental
memories are taken into account by the matrix G prescribed by Theorem 1, which is
the inverse of a kind of similarity matrix.
Let us finish this section by pointing out the relationship between GRE-FAM, fNN,

and SM-FAM classifiers. Suppose that there exists only one fundamental memory Aγ ,
with Aγ 6= ∅, such that S(Aγ , X) > S(Aξ, X) for all ξ 6= γ. In other words, Aγ is the
unique fundamental memory most similar to the input X. From Eq.(4.37), the fNN
evidently attributes to X the class label `γ of Aγ , that is, CfNN (X) = `γ . Moreover,
it is not hard to show that the SM-FAM of Esmi et al. also attributes to X the class
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label `γ [12]. Now, from Corollary 1, the output X1 of the single-step GRE-FAM
converges to Aγ as α → ∞. Also, the weight wξ0 converges to the delta Kronecker
δξγ . Since d2 is continuous, we have

lim
α→∞

ηi = lim
α→∞

d2

(
X1,

p∑
ξ=1

wξ0χi(`ξ)Aξ
)

= d2

(
Aγ ,

p∑
ξ=1

δξγχi(`ξ)Aξ
)

= d2

(
Aγ , χi(`γ)Aγ

)
, ∀i ∈ L. (4.53)

On one hand, if Aγ belongs to class i, then

lim
α→∞

ηi = d2 (Aγ , Aγ) = 0. (4.54)

On the other hand, we have

lim
α→∞

ηi = d2 (Aγ , ∅) > 0, (4.55)

if Aγ does not belong to class i. Concluding, such as the fNN and the SM-FAM,
the GRE-FAM classifier assigns to input X the class label `γ of the most similar
fundamental memory Aγ when α is sufficiently large. In many practical situations,
however, the parameter α cannot be made indefinitely large. As shown in Examples 6
and 7, the GRE-FAM classifiers may differ significantly from fNN as well as from SM-
FAM if the parameter α is not sufficiently large. The next section compares further the
GRE-FAM classifier with many other classifiers from the literature, including SM-FAM
and fNN classifiers.

4.5 Computational Experiments
In this section, we evaluate the classification accuracy of GRE-FAM classifiers in some
benchmark problems available on the internet. Furthermore, we compare them with
some other classifiers from the literature. For simplicity, we will only consider the GRE-
FAM models defined using the Gregson’s similarity measure SG and the complement
of the relative Hamming distance SH . Moreover, we fix the parameter α = 30.
Consider the following fifteen benchmark classification problems available at the

Knowledge Extraction Based on Evolutionary Learning (KEEL) database repository:
Appendicitis, cleveland, crx, ecoli, glass, heart, iris, monks, movementlibras, pima,
sonar, spectfheart, vowel, wdbc, and wine [2]. Table 4.1 summarizes the information
about the classification problems, also called data sets.
According to previous experiments described in the literature [1, 12], we evaluated

the accuracy of the classifiers using 10-fold cross-validation. Specifically, we first
partitioned each data set into 10 folds. Then, each folder served as a test set for one
time while the union of the remaining 9 folders were used for training. The average of
the accuracies obtained from these 10 experiments is used to evaluate the performance
of a classifier. We would like to point out that we used the same partitioning as in
[1, 2, 12] to ensure a fair comparison.
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Table 4.1: Description of the classification problems.

Instances Categorical Numerical Classes
Features Features

Appendicitis 106 0 7 2
Cleveland 297 0 13 5

Crx 653 9 6 2
Ecoli 336 0 7 8
Glass 214 0 9 7
Heart 270 0 13 2
Iris 150 0 4 3

Monks 432 0 6 2
Movementlibras 360 0 90 15

Pima 768 0 8 2
Sonar 208 0 60 2

Spectfheart 267 0 44 2
Vowel 990 0 13 11
Wdbc 569 0 30 2
Wine 178 0 13 3

Note that the data sets listed on Table 4.1 contain both categorical and numerical
features. Therefore, some pre-processing are required to convert the original data into
fuzzy sets. First, a categorical feature f ∈ {v1, . . . , vc}, with c > 1, is transformed
into a c-dimensional numerical feature n = (n1, n2, . . . , nc) ∈ Rc as follows for all
i = 1, . . . , c:

ni =
{

1, f = vi,

0, otherwise,
(4.56)

For example, the crx data set contain a categorical feature with 14 possibilities. Such
categorical feature is transformed into 14 numerical features using Eq.(4.56). At the
end, an instance of the transformed crx data set contain 46 numerical features instead
of 9 categorical and 6 numerical features of the original classification problem. After
converting categorical features into numerical values, an instance from a data set can
be written as a pair (x, `), where x = [x1, . . . , xn]T ∈ Rn is a vector of numerical
features and ` ∈ L denotes its class label. Furthermore, we can associated to each
feature vector x ∈ Rn a fuzzy set A = [a1, a2, . . . , an]T by means of the equation

ai = 1
1 + e−(xi−µi)/σi

∈ [0, 1], ∀i = 1, . . . , n, (4.57)

where µi and σi represent respectively the mean and the standard deviation of ith
component of all training instances. As a consequence, any training set can be written
as a labeled family of fuzzy sets AL = {(Aξ, `ξ) : ξ = 1, . . . , p}.

Remark 3. Alternatively, the fuzzy set A = [a1, . . . , an] ∈ [0, 1]n can be derived from



Pattern Classification using GRE-FAMs 97

the feature vector x = [x1, . . . , xn]T ∈ Rn by means of the equation

ai = ϕ

(
xi − xmin

i

xmax
i − xmin

i

)
, ∀i = 1, . . . , n, (4.58)

where xmax
i and xmin

i represent respectively the maximum and the minimum values of
ith component of all training instances. Also, ϕ is the piece-wise linear function given
by Eq.(4.8). In this case, however, some information may be lost if the ith component
of the probed feature vector does not belong to the interval [xmin

i , xmax
i ], which has

been determined from the training samples.
The last two columns of Table 4.2 show the classification accuracies produced by

the GRE-FAM classifiers on each data set as well as the average accuracy on all
classification problems. For comparison purpose, Table 4.2 also contains the accura-
cies produced by the following 12 classifiers: structural learning algorithm on vague
environment (2SLAVE) [14], fuzzy hybrid genetic based machine learning algorithm
(FH-GBML) [20], steady-state genetic algorithm to extract fuzzy classification rules
from data (SGERD) [31], classification based on associations (CBA) [27], an improved
version of the CBA method (CBA2) [28], classification based on multiple association
rules (CMAR) [26], classification based on predictive association rules (CPAR) [48], a
C4.5 decision tree (C4.5) [35], fuzzy association rule-based classification method for
high-dimensional problems (FARC-HD) [1], a Θ-fuzzy associative memory (Θ−FAM)
[12], and the fNN presented in Example 5. We would like to point out that the
accuracy values of the first 10 classifiers have been extracted from [1, 12]. Finally,
the highest classification accuracy for each data set has been typed using boldface
numbers.
Table 4.2 reveals that the GRE-FAM classifiers yielded very satisfactory classification

performance. In fact, the GRE-FAM classifiers based on SG and SH produced the
highest average accuracy rates of 84.84% and 85.98%, respectively. In addition, the
GRE-FAM classifier based on SH outperformed all the other classifiers in 5 of the
15 data sets under consideration, namely: Glass, movementlibras, sonar, wdbc, and
wine. In particular, the classification performance of the GRE-FAM SH classifier on
the glass classification problem is approximately 12% higher than the CBA2 model,
which yielded the highest accuracy reported in the literature before this work.
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Table 4.2: Classification accuracy using 90-10 training-test split of the available data. The accuracy of the ten first classifiers has been extracted from [12].

2SLAVE FH-
GBML

SGERD CBA CBA2 CMAR CPAR C4.5 FARC-
HD

Θ-FAM fNN
SG

fNN
SH

GRE-
FAM
SG

GRE-
FAM
SH

Appendicitis 82.91 86 84.48 89.6 89.6 89.7 87.8 83.3 84.2 81.18 82.09 82.09 85.09 85.09
Cleveland 48.82 53.51 51.59 56.9 54.9 53.9 54.9 54.5 55.2 51.17 44.24 43.55 53.88 55.6
Crx 74.06 86.6 85.03 83.6 85 85 87.3 85.3 86 82.02 63.6 63.73 85.58 85.13
Ecoli 84.53 69.38 74.05 78 77.1 77.7 76.2 79.5 82.2 76.78 79.2 78.90 83.97 83.65
Glass 58.05 57.99 58.49 70.8 71.3 70.3 68.9 67.4 70.2 70.49 73.81 73.81 78.19 80.92
Heart 71.36 75.93 73.21 83 81.5 82.2 80.7 78.5 84.4 78.15 67.78 66.67 80.74 82.59
Iris 94.44 94 94.89 93.3 93.3 94 96 96 96 96 95.33 94.67 94 94
Monks 97.26 98.18 80.65 100 100 100 100 100 99.8 98.63 88.34 90.44 97.27 98.86
Movementlibras 67.04 68.89 68.09 36.1 7.2 39.2 63.6 69.4 76.7 84.72 85.83 86.94 86.67 88.06
Pima 73.71 75.26 73.37 72.7 72.5 75.1 74.5 74 75.7 67.44 67.98 67.58 73.71 75.15
Sonar 71.42 68.24 71.9 75.4 77.9 78.8 75 70.5 80.2 80.69 84.55 84.64 83.1 86.48
Spectfheart 79.17 72.36 78.16 79.8 79.8 79.4 78.3 76.5 79.8 81.3 72.71 73.82 79.42 80.53
Vowel 71.11 67.07 65.83 63.6 74.9 60.4 63 81.5 71.8 97.07 93.74 99.29 99.09 99.09
Wdbc 92.33 92.26 90.68 94.7 95.1 94.9 95.1 95.2 95.3 96.14 93.67 93.67 96.31 96.84
Wine 89.47 92.61 91.88 93.8 93.8 96.7 95.6 93.3 94.3 97.24 84.87 83.20 95.52 97.75

Average 77.05 77.22 76.15 78.09 76.93 78.49 79.79 80.33 82.12 82.6 78.52 78.87 84.84 85.98
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4.6 Concluding Remarks
In this chapter, we first reviewed the GRE-FAM models introduced by Souza et al.
in [10]. In few words, a GRE-FAM is a multilayer recurrent neural network designed
for the storage and recall of a family of fuzzy sets A = {A1, . . . , Ap}. A GRE-FAM
is characterized by the fundamental memories A1, . . . , Ap, a similarity measure S, a
parameter α > 0, and a real-valued matrix G ∈ Rp×p. In this chapter, we showed
how to compute a matrix G such that any fundamental memory is a fixed point of the
GRE-FAM. As a consequence of this result, a GRE-FAM can implement high-capacity
associative memory. Besides the high-storage capacity, we showed that the output
X1 of a single-step GRE-FAM converges point-wise to a linear combination of the
fundamental memories most similar to the input X0 as the parameter α→∞.
The main contribution of this chapter is the application of GRE-FAMs to pattern

classification. Inspired by sparse representation classifiers [45], we assumed that the
output X1 of a single-step GRE-FAM can be expressed as a linear combination of
the fundamental memories that belong to the class of the input X0. Using this
hypothesis, we presented Algorithm 4.1, which summarizes the GRE-FAM classifier.
Also, we pointed out that the relationship between GRE-FAM, fuzzy nearest neighbor
(fNN), and similarity-measure fuzzy associative memory (SM-FAM) classifiers. An
illustrative example revealed that the GRE-FAM classifier, with the matrix G prescribed
by Theorem 1, may take into account the distribution of the training data.
The chapter finishes with applications of the GRE-FAM classifier to some well-know

benchmark classification problems taken from the KEEL database [2]. The GRE-FAM
classifiers produced competitive performances in terms of accuracy in comparison to
many classifiers from the literature [1, 12]. Specifically, the GRE-FAM classifiers based
on SG and SH , both with the parameter α = 30, yielded the highest average accuracy
rates over all classification problems. Furthermore, the GRE-FAM classifier based on
SH outperformed all the other classifiers in 5 of the 15 data sets under consideration.
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