
CHAPTER 5

Image Analysis by Fractional-order Orthogonal Moments

O. El ogri, M. Yamni, H. Karmouni, A. Daoui, M. Sayyouri and H.
Qjidaa

Continuous orthogonal moments and discrete orthogonal moments, as a category
of typical moments, have been widely used in image analysis. However, the order of
these moments is limited to an integer and their fractional versions have not been
studied sufficiently in the literature. This chapter provides an overview of fractional
order orthogonal moments (FrOM) and their applications in image analysis. A de-
tailed study of these moments is provided, including the mathematical development,
properties, and computational aspects of these descriptors. Applications have been
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studied to validate the performances of the presented FrOMs, such as 2D/3D image
reconstruction, RST invariance, 2D/3D image classification and image watermarking.
The theoretical analysis and the experimental results show the superiority and the effi-
ciency of the FrOMs compared to the classical versions in terms of the results obtained
in the adopted image processing applications.

5.1 Introduction
Moments are important image descriptors in computer vision. They have been widely
used in many applications such as image analysis [37, 57, 56, 21], image reconstruction
[61, 10, 22], image watermarking [35, 51, 53], image compression [38, 50], medical
image analysis [9], image registration, texture retrieval [8], image indexing [36], edge
detection, template matching [18], face recognition [14, 12], 3D geometric [28, 27, 23],
optical flow estimation [32] and forgery detection [42].
Generally, moments are divided into two main categories: (1) non-orthogonal mo-

ments and (2) orthogonal moments [13]. Geometric moments are the most popular
moments in the first category because they are the first that have been applied for
image analysis due to their simplicity. However, they suffer from the problem of infor-
mation redundancy due to the non-orthogonality of their kernel function, which limits
their applications in cases where more discriminating information must be captured
[52]. This problem led scientists to introduce the second category of moments, Orthog-
onal Moments (OMs), which use orthogonal polynomials as kernel functions. Thanks
to the orthogonality property, OMs are able to represent images without information
redundancy and therefore have attracted considerable attention in several applications
relating to images and signals. OMs also fall into two main families: Continuous
Orthogonal Moments (COMs) which are based on continuous orthogonal polynomi-
als such as Legendre [48], Zernike [33], pseudo-Zernike [7], Gegenbauer [19], Jacobi,
Fourier-Mellin [46], Gaussian-Hermite [54], Chebyshev [59] and separable COMs [59],
as long as the Discrete Orthogonal Moments (DOMs) which are based on discrete
orthogonal polynomials such as the polynomials of Tchebichef [37], Krawtchouk [57],
[26], Hahn [56], Charlier [60, 16], Meixner [45, 25], Dual Hahn [62], Racah [61] and
separable DOMs [59, 44, 43, 17].

A thorough literature study has shown that the order of the existing orthogonal mo-
ments (COMs and DOMs) is always limited to an integer, because the kernel function
is defined for the integer order. However, it is sometimes necessary to calculate them
for real or fractional orders for reasons of accuracy, security and location of Regions
of Interest (ROI) in the image. In recent years, the focus has been on the search for
fractional OMs (FrOMs). In this direction, some continuous FrOMs (FrCOMs) have
been proposed, namely the fractional moments of Fourier-Mellin (FrFMMs) [58], Leg-
endre (FrLMs) [49], Zernike (FrZMs) [30], Chebyshev (FrChMs) [5] and generalized
Laguerre [11]. The FrCOMs are defined by substituting x by xα (α ∈ R+) in the ker-
nel function of conventional moments. Therefore, the order of the FrCOMs becomes
a positive real number.
Since the images are discrete, the calculation of FrCOMs is characterized by [24]:

1) the need for an appropriate transformation of the image coordinates for FrCOMs to
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be applied, and by 2) the approximation of the integrals by summations, which causes
discretization and approximation errors. To limit these errors, scientists are oriented
towards Fractional Discrete Orthogonal Moments (FrDOMs) such as the FrDOMs of
Krawtchouk (FrKMs) [35], Tchebichef (FrTMs) [51] and Charlier (FrCMs) [53]. Since
the substitution method (x by xα) cannot be applied to the case of discrete moments,
the derivation of the FrDOMs is done by the decomposition of the eigenvalues of
the matrix of the classical kernel function. FrDOMs have the particularity of being
directly defined in the discrete image domain, which has established them as families
of moments with high discriminating power. FrCOMs and FrDOMs can be considered
as a general version of classical COMs and DOMs, respectively.
In this chapter, we present a detailed overview of the properties of FrCOMs and

FrDOMs and their applications in the image field.
In the first axis of this chapter, we discuss in detail the properties of FrCOMs and

provide a detailed discussion of the computational aspects of these descriptors, includ-
ing mathematical development fast and stable accurate computation. The FrCOMs of
Legendre (FrLMs) are implemented in this chapter as an example of this type of mo-
ments. The capacity of FrLMs is evaluated in terms of 2D/3D image reconstruction,
RST invariance and 2D/3D image classification.
In the second axis of this chapter, we discuss in detail the properties of FrDOMs

and then present the mathematical background of FrDOM theory, including algebraic
development and the properties of eigenvalues and eigenvectors of the kernel function.
To illustrate the application of FrDOMs, a watermarking scheme for image copyright
protection is studied. The Fractional Charlier moments (FrCMs) are implemented to
show the interest of this type of moments and the advantages that can be expected
through an appropriate choice of fractional orders. Several numerical experiments
are performed to confirm the effectiveness of FrDOMs in terms of imperceptibility,
robustness, and security of watermarking scheme.
The theoretical analysis and the experimental results show the superiority and the

efficiency of the FrOMs (FrCOMs and FrDOMs) compared to the classical versions in
terms of the results obtained in the adopted image processing applications.

5.2 Fractional-order Continuous Orthogonal
Moments (FrCOMs)

Orthogonal moments are the most prominent global shape descriptors which are widely
used for various image processing and computer vision applications such as image
classification, object recognition, image retrieval. However, the continuous orthogonal
moments and their Rotation, Scaling and Translation (RST) invariants are restricted to
being an integer order, where the order of the basis continuous orthogonal polynomials
are integers. Consequently, less work has been carried out in the literature for the use
of fractional-order continuous orthogonal moments (FrCOMs) as shape descriptors for
2D and 3D images classification. Orthogonal moments with integer-order are a special
case of fractional-order orthogonal moments.
In recent years, considerable attention has been given to find more accurate numer-

ical solution of Fractional Differential Equations (FDEs) using continuous orthogonal
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polynomials. In fact, the numerical resolution of fractional differential equations from
orthogonal polynomials requires the definition of a new type of orthogonal polynomi-
als, called Fractional-order orthogonal polynomials [31, 29]. This type of orthogonal
polynomials involves the introduction of a fractional parameter α � 0, in order to
generalize the notion of integer order n with n ∈ N to the fractional order nα.
This has led to define the fractional-order type of some classical orthogonal moments
[59, 20, 34, 55], such as fractional-order Legendre moments [49], fractional-order
Zernike moments [30], fractional-order Chebyshev moments [5] and fractional-order
generalized Laguerre moments [11].
In the following, we present the concept of fractional orthogonal moments and

discussed their properties while applying them on 2D and 3D image reconstruction
and object recognition. We initially introduce the necessary relations and properties
to define the FrLMs in the Cartesian coordinates. Then, we provide the theoretical
framework to construct the Fractional-order Legendre Moment Invariants (FrLMIs),
which are invariants with respect to rotation, scaling and translation transforms. After
extensive experimentation, it is found that fractional moments are highly robust to
image noise, capable of ROI feature extraction and are better than conventional integer
order moments in both image reconstruction and classification of 2D and 3D images.

5.2.1 Classical Orthogonal Legendre polynomials

The classical orthogonal Legendre polynomials of integer order [41], which denoted as
Ln(x), are a set of orthogonal polynomials on the interval [−1, 1]. These polynomials,
Ln(x), satisfy the condition:

∫ 1

−1
Ln(x)Lm(x)w(x) dx = d2

nδnm, (5.1)

with respect to the weight function w(x) = 1 and the squared norm d2
n = 2

2n+1 , where
δnm denotes the Kronecker symbol.
Legendre polynomials defined in Cartesian coordinates, which are called Shifted

Legendre polynomials (SLPs) can be easily obtained by the three terms recurrence
formula:

Ln+1(x) = (2n+1)(2x−1)
n+1 Ln(x)− n

n+1Ln−1(x) ; n ≥ 1

L0(x) = 1, L1(x) = 2x− 1.
(5.2)

The analytic form of the shifted Legendre polynomial Ln(x) of degree n given by

Ln(x) =
n∑
k=0

(−1)n+k
(
n
k

)(
n+ k
k

)
xk. (5.3)

Note that Ln(0) = (−1)n and Ln(1) = 1.
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5.2.2 Fractional-order Orthogonal Legendre Polynomials
Let α be a rational positive number α � 0. The Fractional-order Orthogonal Legendre
Polynomials (FrLPs), denoted FrLαn(t), are defined on the interval [0, 1] and can be
determined by introducing the change of variable x = 2 tα − 1, we can define the
fractional-order Legendre polynomials FrLαn(t) as [31, 29]:

FrLαn(t) = Ln(2tα − 1), t ∈ [0, 1] . (5.4)

The FrLPs are a particular solution of the normalized eigenfunctions of the singular
Sturm–Liouville problem [31]:

[
(t− t1+α)FrL′n α(t)

] ′
+ α2n(n+ 1)tα−1FrLαn(t) = 0, t ∈ [0, 1] . (5.5)

By using the recurrence formula of Eq.(5.2), we can define the three terms recurrence
formula of the FrLPs as:

FrLαn+1(t) = (2n+1)(2tα−1)
n+1 FrLαn(t)− n

n+1FrL
α
n−1(t) ; n ≥ 1

FrLα0 (t) = 1, F rLα1 (t) = 2tα − 1.
(5.6)

The FrLPs satisfy the orthogonality relation on the interval [0, 1]:∫ 1

0
FrLαn(t)FrLαm(t)wα(t) dt = d2

n,αδnm, (5.7)

with respect to the weight function wα(t) = tα−1 and the squared norm d2
n,α =

1
α(2n+1) .
The analytic form of FrLαn(t) of degree nα given by

FrLαn(t) =
n∑
k=0

Bnkt
αk, withBnk = (−1)n+k

(
n
k

)(
n+ k
k

)
. (5.8)

We can define the normalized FrLPs by:

F̃ rL
α

n(t) =

√
wα(t)
d2
n,α

FrLαn(t). (5.9)

Therefore, the orthogonality relation of the normalized FrLPs is given by:∫ 1

0
F̃ rL

α

n(t)F̃ rL
α

m(t)dt = δnm. (5.10)

Figure 5.1(a), (b), (c) and (d) show the plots for the first seven orders of the
fractional-order Legendre polynomials FrLαn(t) in the interval [0, 1], for different values
of α = 0.2, α = 1, α = 1.4 and α = 3, respectively.
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(a) (b)

(c) (d)

Figure 5.1: Plot of FrLPs for different values of α = 0.2, α = 1, α = 1.4 and α = 3
up to order 6, with t ∈ [0, 1] .
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Unlike the classical orthogonal Legendre polynomials of integer order, which pos-
sess a uniform distribution of zeros at fixed points, the FrLPs provide the capability to
control the distribution of zeros and their positions, based on the fractional parameter
α. As demonstrated in Figure 5.1, for α = 1, we can recover the classical shifted
Legendre polynomials, and therefore the zeros are uniformly distributed on the defini-
tion interval. On the other hand, by taking α ≺ 1, the distribution of zeros of FrLPs
is biased to the left region of the interval [0, 1]. While, for α � 1, the distribution
of zeros of FrLPs is biased to the right region of the interval [0, 1]. Finally, a more
profound understanding of the FrLPs can be found in the study [31, 29].

5.2.3 Fractional-order Orthogonal Legendre Moments
The Fractional-order Orthogonal Legendre Moments (FrLMs) of order α(n+m+ p)
with n,m, p ∈ N for a given function f (x, y, z), which is defined continuously on the
square region [0, 1]× [0, 1]× [0, 1] can be computed using the continuous integrals as
follows:

FrLMα
nmp =

∫ 1

0

∫ 1

0

∫ 1

0
f(x, y, z)F̃ rL

αx

n (x)F̃ rL
αy

m (y)F̃ rL
αz

p (z)dxdydz. (5.11)

Hence, for a digital image intensity function f (i, j, k) of size N × M × K, the
moments FrLMα

nmp can be computed using ZOA method as:

FrLMα
nmp =

N−1∑
i=0

M−1∑
j=0

K−1∑
k=0

f(i, j, k)F̃ rL
αx

n (xi)F̃ rL
αy

m (yj)F̃ rL
αz

p (zk)∆x∆y∆z,

(5.12)
with ∆x = 1

N , ∆y = 1
M and ∆z = 1

K , where the mapped image coordinates are:
An approximation of the original image can be reconstructed by:

f(i, j, k) =
nmax∑
i=0

mmax∑
j=0

pmax∑
k=0

FrLMα
nmpF̃ rL

αx

n (xi)F̃ rL
αy

m (yj)F̃ rL
αz

p (zk). (5.13)

The fractional values αx, αy and αz are used to control the distribution of zeros,
allowing the capacity to extract local shape features from any Region-Of-Interest (ROI)
of the image [49, 11], which makes the moments more suitable for image matching
and local image watermarking. In fact, FrLMs can be used for ROI feature extraction
in image analysis.

5.3 Fractional-order Legendre Moment Invariants
5.3.1 Fractional-order Geometric Moment Invariants
The Geometric Moments of fractional-order (FrGMs), (αxp+αyq+αzr) for the image
function, f(i, j, k), of the size N ×M ×K, are defined as follows:
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FrGMαxαyαz
pqr =

N−1∑
i=0

M−1∑
j=0

K−1∑
k=0

f(i, j, k)mαxαyαz
pqr (xi, yj , zk), (5.14)

where

mαxαyαz
pqr (xi, yj , zk) =

∫ xi+
∆xi

2

xi−
∆xi

2

∫ yi+
∆yj

2

yi−
∆yj

2

∫ zk+ ∆zk
2

zk−
∆zk

2

xαxpyαyqzαzrdxdydz. (5.15)

Therefore, based on the separability property of the moments kernel function, we
can write the triple integral as follow:

mαxαyαz
pqr (xi, yj , zk) =

(∫ xi+
∆xi

2

xi−
∆xi

2

xαxpdx

)∫ yi+
∆yj

2

yi−
∆yj

2

yαyqdy

(∫ zk+ ∆zk
2

zk−
∆zk

2

zαzrdz

)
,

(5.16)
where

mαxαyαz
pqr = 1

(αxp+ 1)(αyq + 1)(αzr + 1)

[
uαxp+1
i+1 − uαxp+1

i

] [
v
αyq+1
j+1 − vαyq+1

j

]
[
wαzr+1
k+1 − wαzr+1

k

]
,

(5.17)

with

ui = (i− 0.5) ∆xi ; vj = (j − 0.5) ∆yj ; wk = (k − 0.5) ∆zk
ui+1= (i+0.5) ∆xi ; vj+1= (j+0.5) ∆yj ; wk+1= (k+0.5) ∆zk.

(5.18)

We can define the centroids of the x-, y-, and z-coordinates, respectively x̃, ỹ and z̃
by:

x̃ = FrGM
αxαyαz
100

FrGM
αxαyαz
000

, ỹ = FrGM
αxαyαz
010

FrGM
αxαyαz
000

, z̃ = FrGM
αxαyαz
001

FrGM
αxαyαz
000

(5.19)

The above definition Eq.(5.14) is given for image coordinates xi, yj and zk with
positive values. To avoid problem that the expressions xαxpi , y

αyq
j or zαzrk may be

undefined for xi, yj , zk < 0, we assume that αx, αy andαz have an odd denominator
and can be written as a

2b+1 with a, b ∈ N where a 6= 0. The fractional-order central
moments which are translation invariants are:

ηαxαyαzpqr =
N−1∑
i=0

M−1∑
j=0

K−1∑
k=0

f(i, j, k)Tαxαyαzpqr (xi, yj , zk), (5.20)

where
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Tαxαyαzpqr =
∫ xi+

∆xi
2

xi−
∆xi

2

∫ yi+
∆yj

2

yi−
∆yj

2

∫ zk+ ∆zk
2

zk−
∆zk

2

(x− x̂)αxp (y − ŷ)αyq (z − ẑ)αzr dxdydz.

(5.21)
with αx, αy andαz must satisfy the condition that they have an odd denominator.
Then, by applying the separability property of the moments of the principal function,

we can write the triple integral in Eq.(5.21) as follows:

T
αxαyαz
pqr = 1

(αxp+1)(αyq+1)(αzr+1)
[
(ui+1 − x̂)αxp+1 − (ui − x̂)αxp+1]

×
[
(vj+1 − ŷ)αyq+1 − (vj − ŷ)αyq+1][

(wk+1 − ẑ)αzr+1 − (wk − ẑ)αzr+1] . (5.22)

In this section we consider the Euler Angle Sequence (θ, ϕ, ψ), which is commonly
used in aerospace engineering and computer graphics. First rotate θ angle along x-
axis, next, rotate ϕ angle along y-axis and finally rotate ψ along z-axis [13, 4]. In
general, the 3D rotation matrix can be considered as a linear transformation of the
3D object coordinates, as follows:

 x′

y′

z′

 = Rxyz (θ, φ, ψ)

 x− x̂
y − ŷ
z − ẑ

 =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 x− x̂
y − ŷ
z − ẑ


(5.23)

with (Rij) 1 ≤ i ≤ m
1 ≤ j ≤ n

are the elements of Rxyz (θ, φ, ψ) matrix.

The 3D geometric moment invariants of fractional order (FrGMIs), FGMI
αxαyαz
pqr ,

which are independent of rotation, scaling and translation transforms, are:

FrGMIαxαyαzpqr = λ−γ
N−1∑
i=0

M−1∑
j=0

K−1∑
k=0

f(i, j, k)µαxαyαzpqr (xi, yj , zk) (5.24)

where

µαxαyαzpqr =
∫ xi+

∆xi
2

xi−
∆xi

2

∫ yi+
∆yj

2

yi−
∆yj

2

∫ zk+ ∆zk
2

zk−
∆zk

2

[

(R11(x− x̂) + R12(y − ŷ) + R13(z − ẑ))αxp
(R21(x− x̂) + R22(y − ŷ) + R23(z − ẑ))αyq
(R31(x− x̂) + R32(y − ŷ) + R33(z − ẑ))αzr

dxdydz. (5.25)

The normalization parameters γ, λ,θ, ϕ and ψ the rotational invariants can be ob-
tained by normalizing the transformed 3D object, are defined in [4]. For αx+αy+αz =
1, they can be determined as follows:
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λ = FrGM
αxαyαz
000 , γ = 1 + αxn+αym+αzp

3
θ = 1

2 tan−1
(

2η011
η020+η002

)
, ϕ = 1

2 tan−1
(

2η101
η200+η002

)
, ψ = 1

2 tan−1
(

2η110
η200+η020

)
.

(5.26)
The exact calculation of this integral Eq.(5.25) is very difficult or even impossible.

We refer the readers to [6] for analytic computation of the triple integrals mαxαyαz
pqr

and Tαxαyαzpqr , based on their separability property. While, for the integral µαxαyαzpqr

of Eq.(5.25), we suggest the use of numerical integration technique, for instance
Simpson’s rule or Gaussian quadrature [47], since it is difficult to split the triple integral
of Eq.(5.25) into three simple 1-D integrals.

5.3.2 FrLM Invariants
This subsection aims to present the efficiency the computation of Fractional-order Leg-
endre Moment Invariants (FrLMIs) for any of their parameters values, with respect to
transformations, RST. We define FrLMs for a given weighted image intensity function
f̃(i, j, k) =

[
wαx(x)wαy (y)wαz (z)

]−1/2
f(i, j, k), of size N ×M × K voxels, with

wα(x) is the weight function of FrLPs, as follows:

FrLMα
nmp =

∫ 1
0
∫ 1

0
∫ 1

0 f̃(i, j, k)F̃ rL
αx

n (xi)F̃ rL
αy

m (yj)F̃ rL
αz

p (zk)dxdydz

= 1√
d2
n,αx

d2
m,αy

d2
p,αz

∫ 1
0
∫ 1

0
∫ 1

0 f(i, j, k)FrLαxn (xi)FrL
αy
m (yj)FrLαzp (zk)dxdydz

(5.27)
By the help of Eq.(5.12) and Eq.(5.8), we can express the FrLMs in terms of the

Fractional-order Geometric Moments FrGMαxαyαz
pqr , based on the relation between

FrLαn(t) and the polynomials of tαk:

FrLMα
nmp = 1√

d2
n,αxd

2
m,αyd

2
p,αz

n∑
l=0

m∑
s=0

p∑
r=0

Bn,lBm,sBp,rFrGM
αxαyαz
lsr . (5.28)

In order to obtain the invariants of rotation, scaling and translation of FrLMs,
which will be denoted by FrLMIαnmp along this paper, the terms FrGMαxαyαz

pqr in
the previous equation will be replaced by the FrGMI

αxαyαz
pqr of Eq.(5.24):

FrLMIαnmp = 1√
d2
n,αxd

2
m,αyd

2
p,αz

n∑
l=0

m∑
s=0

p∑
r=0

Bn,lBm,sBp,rFrGMI
αxαyαz
lsr (5.29)

The direct computation of the coefficients Bn,k defined in Eq.(5.8) involves the
evaluation of factorial terms for each value of n and k. Based on the property that
n! = n (n− 1)!, the coefficients Bn,k of Eq.(5.8) can be easily computed using the
following recursive method:
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Bn,k = − (n+ k)(n− k + 1)
k2 Bn,k−1 for 1 ≤ k ≤ n, and Bn,0 = (−1)n (5.30)

It is clearly seen from Eq.(5.30) that the recursive method is free from factorial terms
and it is more adequate for the computation of the polynomial coefficients Bn,k, which
could considerably reduce the time required for computing moment invariants, also for
enhancing their numerical stability, since it is free from factorial terms [39, 40].

5.4 Fractional-order Discrete Orthogonal Moments
(FrDOMs)

Discrete orthogonal moments have been carefully studied due to their peculiarity of
being directly defined in the discrete image/signal domain, as their kernel consists of
discrete orthogonal polynomials and, therefore, they are suitable for digital images.
An overview of discrete orthogonal polynomials such as de Tchebichef, Krawtchouk,
Hahn, Charlier and Meixner and their corresponding moments can be found in reference
[60]. All discrete orthogonal moments based on the discrete orthogonal polynomials
mentioned above are limited to be of integer order since the basic discrete orthogonal
polynomials are of integer order.
Recently, the focus has been on the study of discrete orthogonal polynomials of

fractional order which are used as kernel functions to define discrete orthogonal mo-
ments of fractional order (FrDOMs) such as fractional-order Krawtchouk moments
[35], fractional-order Tchebichef moments [51] and fractional-order Charlier moments
[53]. The classical versions of integer order (DOMs) are special cases of FrDOMs.
These fractional-order descriptors are successfully used in different image processing
fields such as image watermarking, image reconstruction and image encryption.
In the following, we discuss in detail the properties of fractional-order discrete orthog-

onal polynomials and their corresponding moments. Due to the limited paper length,
we present the mathematical context of fractional-order Charlier moments [53], in-
cluding the algebraic expansion and the properties of the eigenvalues and eigenvectors
of the kernel function.
We start with the classical Charlier polynomials of integer order, then we present

the fractional-order version of the Charlier polynomials and finally we give their corre-
sponding moments.

5.4.1 Classical Charlier polynomials
The Charlier polynomials satisfy the following orthogonal condition [60],

∞∑
x=0

ωC(x)ca1
n (x)ca1

m (x) = ρC(n)δnm ; n,m ≥ 0 (5.31)

where ρC(n) = n!/a1
n, ωC(x) = e−a1a1

x/x! and the Charlier polynomials ca1
n (x)

are defined as
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ca1
n (x) = 2F0(−n,−x;− 1

a1
), n, x = 0, 1, 2.....∞ (5.32)

where a1 ∈ R+ and 2F0() is the generalized hypergeometric function given by:

2F0(a, b; ; c) =
n∑
k=0

(a)k(b)k(c)k

k! (5.33)

and (a)k = a(a+ 1)(a+ 2)...(a+ k − 1) denotes the pochhammer symbol.
The normalized Charlier polynomial c̃a1

n (x) was defined by Zhu et al. [60] as

c̃a1
n (x) = ca1

n (x)

√
ωC(x)
ρC(n) (5.34)

The relation of orthogonality changes to

∞∑
x=0

c̃a1
n (x)c̃a1

m (x) = δn,m, n,m ≥ 0 (5.35)

The Charlier polynomials satisfy a three-term recurrence relation of type

c̃a1
n (x) = Ac̃a1

n−1(x) +Bc̃a1
n−2(x) (5.36)

where

A = −x+ n− 1 + a1

a1

√
a1

n
, B = 1− n

a1

√
a12

n(n− 1) (5.37)

with the initial conditions

c̃a1
0 (x) =

√
ωC(x)
ρC(0) , c̃a1

0 (x) = a1 − x
a1

√
ωC(x)
ρC(1) (5.38)

5.4.2 Fractional-order Charlier Polynomials (FrCPs)
According to the Eqs. (5.31) and (5.35), the Charlier polynomials c̃a1

n (x) are orthogo-
nal over the interval [0,∞[. To implement these polynomials in a finite interval [0, N ],
Yamni et al. In [53] recommended to use the Gram-Schmidt Process (GSP) to solve
this truncation problem in order to make these polynomials orthogonal in this finite
interval. Therefore, the Charlier polynomials modified by GSP ĉa1

n (x) are orthogonal
to the interval [0, N ].

The discrete Charlier polynomial matrix Ĉ of size N is defined by

Ĉn,x = ĉa1
n (x), 0 ≤ n, x ≤ N − 1. (5.39)

The eigenvalues of Ĉ are λ1 = 1 and λ2 = −1 and their multiplicities are shown in
Table 5.1 [53].



Image Analysis by Fractional-order Orthogonal Moments 113

Table 5.1: Multiplicities of the eigenvalues for matrix Ĉ .
N Multiplicity of λ1 = 1 Multiplicity of λ2 = −1

Even N/2 N/2

Odd (N + 1) /2 (N − 1) /2

Ĉ is a symmetric and orthogonal real matrix. According to the spectral theorem
[15], Ĉ has the following spectral decomposition:

Ĉ =
2∑
k=1

λkPk = λ1P1 + λ2P2 (5.40)

where P i, i = 1, 2, is the orthogonal projection matrix on the ith eigenspace of Ĉ .
The two projection matrices of Ĉ (P1 and P2) can be derived as follows [53]:

P1 = 0.5(I + Ĉ ), P2 = 0.5(I − Ĉ ) (5.41)

The method of deriving the two projection matrices P1 and P2 is presented in detail
in [53].

P1 and P2 satisfy the following properties:

a. PT
i = Pi, i = 1, 2.

b. P2
i = Pi, i = 1, 2.

c. P1P2 = 0 , where 0 denotes the zero matrix.

d. Both matrices P1 and P2 have eigenvalues 0 and 1.

e. The multiplicity of eigenvalue 1 for P1 is equal to the multiplicity of eigenvalue
1 of Ĉ ; the multiplicity of eigenvalue 1 for P2 is equal to the multiplicity of
eigenvalue −1 of Ĉ .

f. The eigenvectors corresponding to nonzero eigenvalues of P1 are orthogonal to
those corresponding to nonzero eigenvalues of P2.

g. The eigenvectors corresponding to nonzero eigenvalues of P1 and P2 are the
eigenvectors of Ĉ , corresponding to eigenvalues λ1, λ2 of Ĉ , respectively.

h. The multiplicity of the eigenvalue 1 for P1 and P2 is both N/2 if N is even,
and if N is odd, the multiplicity of eigenvalue 1 for P1 is (N + 1)/2, and the
multiplicity of eigenvalue 1 for P2 is (N − 1)/2.

To derive an orthonormal basis for each orthogonal projection matrix Pi, Yamni et al.
applied the singular-value decomposition technique. The singular-value decomposition
of P1 and P2 is



114 O. El ogri, et al.

P1 = U1S1V T
1 , P2 = U2S2V T

2 (5.42)

where Uiand Vi are unitary matrices of order N and matrix Si contains in its
diagonal coefficients the singular values of the matrix Pi.

V1andV2 are a set of orthonormal eigenvectors of P1 and P2, respectively, because
they check the following condition [53]:

P1V1= V1S1, P2V2= V2S2 (5.43)

A set of orthonormal eigenvectors V of Ĉ can be obtained from V1andV2 as follows:

V =
{

[u1, u2, ...., uN
2
, v1, v2, ...., vN

2
] , if N is even

[u1, u2, ...., uN−1
2
, uN+1

2
, v1, v2, ...., vN−1

2
], if N is odd (5.44)

where ui and vj are the ith and jth column of V1andV2.
The columns of V can be rearranged to match the eigenvectors to the eigenvalues

of Ĉ such that

Ĉ=V̂ DV̂ T (5.45)

where D is a diagonal matrix with diagonal entries the eigenvalues of Ĉ , which are
arranged in the following form

D =
{
Diag{1,−1, 1, .........,−1}, if N is even
Diag{1,−1, 1, .........,−1, 1}, if N is odd (5.46)

and V̂ is a set of orthonormal eigenvectors

V̂ =
{

[u1, v1, u2, v2........, uN
2
, vN

2
], if N is even

[u1, v1, u2, v2........, uN−1
2
, vN−1

2
, uN+1

2
], if N is odd (5.47)

To define the fractional-order Charlier polynomials(FrCPs), Yamni et al. [53] took
the fractional order as the power of the diagonal matrix D. The FrCP matrix Ĉa of
size N with order α ∈ R can be defined as:

Ĉα=V̂ DαV̂ T =
N−1∑
k=0

e−jkαπ v̂kv̂
T
k (5.48)

where V̂ = [v̂0, v̂1, .........., v̂N−1] with v̂k (k = 0, 1, ........., N − 1) is the Ĉ eigen-
vector obtained from (Eq. (5.52)), and Dα is defined as:

Dα = Diag{1, e−jαπ, e−j2απ, ........., e−j(N−1)απ} (5.49)

Ĉα checks some important properties such as unitary (i.e. Ĉ−α = (Ĉα)−1), index
additivity (i.e. Ĉα+β = ĈαĈβ = Ĉβ+α = ĈβĈα), and reduction to the conventional
matrix of Charlier polynomials Ĉ when the order α is equal to 1, and to the identity
matrix I when the order α is equal to 0.
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5.4.3 Fractional-order Discrete Orthogonal Moments (FrDOMs)
The fractional-order discrete orthogonal moments are a set of moments formed by the
fractional discrete polynomials. The 1D FrDOMs with fractional order α ∈ R can be
expressed by

FrMα = FrPαf (5.50)
where FrMα are the coefficients in the DFrDOM domain, f(x) is one-dimensional

signal with length N , FrPα is a fractional polynomial matrix of size N with order α
as the moment basis set.
The 1D FrKMs [35], 1D FrTMs [51], or 1D FrCMs can be obtained if FrPα is set

as Kα[35], Hα[51], or ĈαEq. (5.53), respectively.
The reconstruction of the signal f can be found from its FrDOMs by using the

following expression:

f = FrP−αFrMα (5.51)
In the case of a digital image f(x, y), with size N × M , the 2D FrDOMs with

fractional orders α, β ∈ R can be expressed by

FrMα,β = FrPα
1 fFrPβ

2 (5.52)
where FrPα1 is a fractional polynomial matrix of size N × N with order α, and

FrP β2 is a fractional polynomial matrix of size M ×M with order β.
By choosing (FrPα

1 &FrPβ
2 ) as (Kα&Kβ) [35], (Hα&H β) [51], and (Ĉα&Ĉβ),

one can obtain the 2D FrKMs [35], 2D FrTMs [51], and 2D FrCMs, respectively.
The previous equation also leads to the following inverse moment transform

f = FrP−α1 FrMα,βFrP−β2 (5.53)

5.5 Experiments, Results and Discussion
In this section, several experiments are performed to validate the performance and effi-
ciency of fractional orthogonal moments (FrCOMs and FrDOMs) compared to classical
integer-order moments (COMs and DOMs). We first examine the capacity of FrCOMs
on 2D/3D image reconstruction. Then, the invariants of FrCOMs are tested in terms
of RST invariability and in terms of 2D/3D image recognition. Finally, we show the
efficiency of FrDOMs in terms of imperceptibility, robustness and security of the wa-
termarking scheme.

5.5.1 2D and 3D image reconstruction using FrCOMs
2D and 3D Images reconstruction using orthogonal moments is an essential process
in different image processing applications. To demonstrate the image representation
capability of the introduced FrLMs in comparison with the existing Chebyshev Mo-
ments (ChMs) [59], Gegenbauer Moments (GegMs) [20], Generalized Laguerre Mo-
ments (GLMs) [34] and Gaussian--Hermite Moments (GHMs) [55], we are conducted
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(a) (b)

Figure 5.2: (a) Original Lena test color images.(b) 3D image «Crabs» from PSB
database [3].

to use the Mean Squared Error (MSE) to measure the reconstruction error between
the original image f(x, y, z) and the reconstructed one f̂(x, y, z). The MSE is defined
as:

MSE = 1
NMK

N−1∑
x=0

M−1∑
y=0

K−1∑
z=0

[
f(x, y, z)− f̂(x, y, z)

]2
(5.54)

Figure 5.3 and Fig. 5.4 depict a comparison between FrLMs, ChMs, GegMs, GLMs
and GHMs, in terms of reconstruction quality of Lena image of size 512×512 and
3D image “Crabs” of size 128×128 × 128, which shown in Fig. 5.2. Moreover, we
considered different fractional parameters values: (A) αx = αy = αz = 0.4, (B)
αx = 1.2, αy = 1, αz = 1.2 and (C) αx = αy = αz = 1.4. From Fig. 5.3 and Fig.
5.4, one can clearly observe that the quality of the reconstructed image becomes closer
to the original one with the increases of moments orders. In addition, the FrLMs show
more visual resemblance to the original images in the early orders, noting the absence
of reconstruction errors for the higher orders.
To further illustrate the performance of the fractional-order moments, Fig. 5.5(a)

and Fig. 5.5(b) show a comparison between the FrLMs, ChMs, GegMs, GLMs and
GHMs, in terms of the MSE values of Lena image reconstruction and 3D image
«Crabs», for an increasing moments order from 0 to 600 and 0 to 130 respectively.
As a result, derived from Fig. 5.5, we can deduce that the FrLMs outperformed all
other existing classical methods. These results ensure the accuracy and stability of
the FrLMs method.

5.5.2 Invariability property of FrCOMIs
Invariances to RST, are essential characteristics for pattern recognition and computer
vision applications. This experiment aims to verify the rotation, scaling and translation
in variance of the FrLMIs. We used the «Crabs» test 3D image of size 128×128×128
pixels, which is selected from Princeton Shape Benchmark (PSB) database [3] and
shown in Fig. 5.2. The test image is firstly translated by vector varying from
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Figure 5.3: The reconstruction color images Lena, using FrLMs, ChMs, GegMs and
GLMs for different values of the maximum moment order n, m = 50, 150,
300, 500, 600.

(−15,−15,−15) to (15, 15, 15) with step (2, 2, 2). Then, scaled by factors start-
ing from 0.4 to 1.4 with interval 0.05 and finally rotated by a rotation angle varying
between 0◦ and 360◦ with interval 10◦. Then, the moment invariants coefficients
of each transformed image are computed up to the third order (n + m≤3) using
four cases: (A) αx = αy = αz = 1.4, (B) αx = 1.4, αy = 1, αz = 0.4 and (C)
αx = αy = αz = 0.4. Subsequently, the relative error between moment invariants
coefficients of the original image and the transformed one is computed, as follows:

RE
(
f, fd

)
=
∥∥FrLMI(f)− FrLMI(fd)

∥∥
‖FrLMI(f)‖ (5.55)

where ‖‖, f , and fd designate the Euclidean norm, the original images and the
deformed images, respectively. It should be emphasized that a very small relative error
leads to a good invariance.
The corresponding results for scale and rotation invariance are illustrated respectively

in Fig. 5.6(a) and Fig. 5.6(b). While the results for translation invariance are not
included, since the values of FrLMIs for all translation vectors remain unchangeable,
which lead to a relative error equals to zero. Furthermore, to understand the effect of
noise on the FrLMIs moment invariants, the test image has been corrupted by different
kind of noise. First, distorted by different densities of Salt-and-Pepper noise varying
from 0% to 5% with interval 0.25%. Second, distorted by Gaussian noise with zero
mean and standard deviation varying from 0 to 0.5 with step 0.05. Figure 5.6(c) and
Fig. 5.6(d) depict respectively the robustness of FrLMIs against Salt-and-Pepper and
Gaussian noise.
Again, the FrLMIs show small relative errors values which ensure the highly accu-

rate invariances to the RST geometric transformations. Moreover, they express high
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Figure 5.4: 3D image «Crabs» reconstruction results, using FrLMs, ChMs, GegMs,
GLMs and GHMs for different values of the maximum moment order n, m,
p = 15, 40, 100, 130.

(a) (b)

Figure 5.5: Comparative study of image reconstruction error of the FrLMs and the
existing classical orthogonal moments [59, 20, 34, 55]. (a) 3D image
«Crabs» (b) Lena color image.
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tolerance against different kinds of noise. These new fractional-order moments out-
performed the existing integer-order orthogonal moments . Eventually, this new set
of invariants could provide an efficient and stable feature representation for image
classification problems.

5.5.3 Classification of 2D and 3D images using FrCOMIs
In this subsection, the recognition ability of the FrLMIs moment invariants in both noise
free and noisy conditions is evaluated using the well-known databases are adopted:
Princeton Shape Benchmark (PSB) [3] and COIL-100 [1]. Basically, this experiment
is conducted on two testing sets, which have been created by selecting 20 images of
different classes from each database, which are shown in Fig. 5.7(a) and Fig. 5.7(b).
The size of the images is unified to be 128×128 pixel, and 128×128×128 voxels for
3D images. Each image in these testing sets is affected by a series of transforms
(8 rotation +8 translations +8 scaling +8 mixed transforms), in order to generate
640 images per database. Furthermore, to assess the noise robustness of moment
invariants, five additional testing databases are created by adding different densities
of Salt-and-Pepper noise {1%; 2%; 3%; 4%; 5%}.
The 2D and 3D image classification performance of FrOLMIs is compared with

the existing methods, Chebyshev Moment invariants (ChMIs) [59], Gegenbauer Mo-
ment invariants (GegMIs) [20], Generalized Laguerre Moment invariants (GLMIs) [34],
Gaussian--Hermite Moment invariants (GHMIs) [55] and the well-known moment in-
variants GMI [48], using the 1-NN (k- Nearest Neighbors with k = 1) classifier with
5-folds cross validation and moment invariants up to order 5 are considered. Finally,
we have considered three testing cases of FrOLMIs: (A) αx = αy = αz = 1.4,
(B) αx = 1.4, αy = 1, αz = 0.4, (C) αx = 0.4, αy = 1.4, αz = 1 and (D)
αx = αy = αz = 0.4. The obtained classification results are listed in Table 2. This
table shows that the FrLMIs outperformed the existing classical methods ChMIs [59],
GegMIs [20], GLMIs [34], GHMIs [55] and GMI [48] in terms of classification accuracy.
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(a) (b)

(c) (d)

Figure 5.6: Relative error of the FrLMIs using 3D image « Crabs » by: scaling trans-
formation (a), rotation (b), Salt-and-Pepper noise (c) and Gaussian noise
(d).

(a) (b)

Figure 5.7: The selected images from each database: , (a) PSB [3] and (b) Coil-100
[1].
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(a)

Figure 5.8: Watermark embedding.

(a)

Figure 5.9: Watermark extraction.

5.5.4 Watermarking based on the FrDOMs
The authors in [35], [51] and [53] proposed image watermarking schemes to verify the
performance of FrKMs, FrTMs and FrCMs, respectively, in terms of image copyright
protection. In these papers, FrDOM coefficients are used to embed the watermark
(hidden information) into the host images. By adjusting the fractional orders of Fr-
DOMs, different transformation domain coefficients can be obtained. In addition, the
fractional orders can serve as secret keys to enhance the security of the watermarking
scheme.
The main idea of these schemes is to divide the original image into image blocks and

then to embed one watermark bit into the FrDOM coefficients of each block by using
the Dither modulation, which is a special form of quantization index modulation (QIM)
(refer to [35] for more details). After substituting the original FrDOM coefficients by
the modified FrDOM coefficients, inverse FrDOMs (iFrDOMs) are performed, and
then the watermarked digital image is obtained. The embedding model is shown in
Fig. 5.8.

In data extraction, the FrDOMs of test image, which can be a distorted version of
the original host image, are calculated in the same way as in the embedding. Then,
the watermark bits are extracted using the FrDOM coefficients, the same quantiza-
tion method and a minimum distance decoder (refer to [35] for more details). The
extracting model is shown in Fig. 5.9.

The test materials in the following experiments comprised 96 gray images of size
512×512 from the image database of the Computer Vision Group, University of
Granada [2]. A 64×64 binary image is used as watermark to embed in the host
image in our experiments.
In this study, the fractional orders in the FrKMs-, FrTMs-, FrCMs-based image

watermarking schemes are (α = 0.4&β = 0.4), (α = 0.9&β = 1.2) and (α =
0.3&β = 0.3) as recommended in articles [35], [51] and [53], respectively. Besides,
the classical DOMs (KMs, TMs and CMs) of the integer orders (α = β = 1) are also
considered in the experiments to verify the importance of the fractional versions for
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Table 5.3: Average PSNRs resulting from examined watermark schemes.
Watermarking schemes Average PSNR (dB)

FrKMs 43.55
KMs 36.78

FrTMs 40.37
TMs 35.29

FrCMs 45.13
CMs 32.37

digital image watermarking tasks.
The performance of the algorithm based on FrDOMs is evaluated in terms of im-

perceptibility using the Peak Signal-to-Noise Ratio (PSNR) as defined as in Eq.(5.56)
and in terms of robustness using the Bit Error Rate (BER) defined as defined as in
Eq.(5.57):

PSNR(dB) = 10 log10
2552 ×N ×M∑N−1

x=1
∑M−1
y=1 (f(x, y)− f̂(x, y))2

(5.56)

BER = BERR
BT

(5.57)

where f̂ is the watermarked image, f is the original image, N×M is the image size,
BERR is the number of erroneous bits and BT is the total number of watermark bits.
Typically, a larger quantization value ∆ (embedding strength of the watermark

bit) will demonstrate better robustness in the image watermarking scheme, while the
imperceptibility of the watermarked image is reduced. To ensure the watermark’s
imperceptibility, the PSNR value should be higher than 40 dB. Therefore, in the
following experiments, the quantization values ∆ are set at 45, 40 and 60 for the
schemes based on FrKMs [35], FrTMs [51] and FrCMs [53], respectively.
From the comparison results in Table 5.3, it is clearly shown that for the same

quantization value, the average PSNR of the FrDOMs-based watermarking scheme is
higher than that of DOMs-based.
In order to illustrate the robust nature of the FrDOMs-based watermarking scheme,

attacks including image compression, noise, and image filtering are used to estimate
the robustness of the watermarking scheme. Table 5.4 summarizes the comparisons
between our proposed watermark extraction results and the results of classical DOMs-
based schemes against various attacks. We observe that the FrDOMs-based method
obtained a higher watermarking robustness than the classical DOMs-based method in
all attack conditions. It can be concluded that the FrDOM-based image watermark-
ing method not only demonstrated good watermark imperceptibility, but also strong
watermark robustness.
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Table 5.4: Average BER values of the FrDOMs and DOMs based watermarking
schemes under different attacks.

Attack type FrKMs KMs FrTMs TMs FrCMs CMs
JPEG compres-
sion (70)

0.0128 0.0194 0.0132 0.0180 0.0122 0.0196

JPEG compres-
sion (30)

0.0521 0.1069 0.0610 0.1107 0.0425 0.1187

Gaussian noise
(0.01)

0.3015 0.3200 0.2810 0.3402 0.2760 0.3300

Gaussian noise
(0.03)

0.3240 0.3905 0.3205 0.4105 0.3052 0.4205

Salt & peppers
noise (0.01)

0.0615 0.1800 0.0602 0.1900 0.0587 0.2100

Salt & peppers
noise (0.03)

0.1740 0.2850 0.1705 0.2908 0.1620 0.2905

Median filtering
(3×3)

0.0591 0.1695 0.0652 0.1840 0.0360 0.1803

Median filtering
(7×7)

0.0940 0.2705 0.1105 0.3052 0.0885 0.3052

Average filtering
(3×3)

0.0291 0.2048 0.0401 0.1950 0.0272 0.1902

Average filtering
(7×7)

0.0840 0.2705 0.1105 0.2727 0.0885 0.2952

Gaussian blur
(0.5)

0.0913 0.1815 0.0901 0.1915 0.0722 0.1950

Gaussian blur (1) 0.1940 0.2652 0.1805 0.2505 0.1125 0.2605
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Figure 5.10: BER value of extracted watermark with fractional orders different from
the embedding stage in the extraction procedure (with α = β = 0.4,
α = β = 0.9 and α = β = 0.3 in the embedding procedure for FrKMs,
FrTMs and FrCMs, respectively).

Fractional orders (a&b) of FrDOMs can be considered as cipher keys in the wa-
termarking scheme, which can enhance the security of watermarking. To show this
advantage, the watermark was embedded into the original images with the fractional
orders α = β = 0.4, α = β = 0.9 and α = β = 0.3 for FrKMs, FrTMs and FrCMs,
respectively. Nevertheless, for watermark extraction, the watermark was extracted
with the fractional orders α = β varying from 0.1 to 1 by an increment of 0.1. The
extracted watermark BER values with various fractional orders are shown in Fig. 5.10.
We can conclude from this figure that when incorrect fractional orders are used to
extract the watermark, the wrong watermark will be obtained with a BER value of
about 0.5. Therefore, the attackers cannot access the embedded watermark without
using the correct fractional orders.

5.6 Conclusion
In this chapter, we presented an overview of FrOMs and their applications in image
analysis. FrOMs are a useful tool, overcoming and generalizing the classical OMs of
integer order. The primary motivation for using them is their additional parameters
(fractional orders) where appropriate choices of these parameters can give the best
results in applications based on FrOMs. The FrCOMs of Legendre (FrLMs) and the
FrDOMs of Charlier (FrCMs) are implemented in this chapter as an example of this
type of moments. Applications have been studied to validate the performances of
the presented FrOMs, such as 2D/3D image reconstruction, RST invariance, 2D/3D
image classification and image watermarking. The experimental results show that



126 O. El ogri, et al.

the performances of the FrOMs (FrCOMs and FrDOMs) are superior to those of the
classical OMs (COMs and DOMs) in the studied applications.
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