
CHAPTER 4

Compositional and Hierarchical Semantic Frameworks for
Hand Gesture Recognition

G. Simion, C. David, C. Caleanu and V. Gui

This chapter presents some new approaches in hand gesture recognition from monoc-
ular and from 3D images. After introducing the main trends from literature, the chap-
ter addresses the hand gesture recognition problem in a compositional framework. The
ability of compositional methods to capture and extract semantic information from se-
lected salient parts of the images is demonstrated for the hand gesture application.
Performances on images with static hand gestures executed on uniform backgrounds
rival the state of the art, while living a lot of room for further optimization and im-
provement. The second work reported in this chapter is focused on using multiple cues
to overcome difficult problems arising when dynamic gestures are executed in front of
heterogeneous backgrounds, with camouflage and sudden illumination changes. Ideas
from robust estimation are integrated in the proposed approach. Finally, some prelimi-
nary results of hand gesture recognition obtained with images generated by 3D time of
flight image sensors, presumed to become prevalent in the near future, are presented.
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4.1 Introduction
The interaction between people and the surrounding devices has changed dramatically
in the last decades. In the beginning there were knobs, buttons, and keyboards.
Nowadays we have touchscreens and multiple sensors interfaces. Lately, the interaction
with smart devices became a common thing. We have smart computers, smart phones,
smart TVs, smart cameras, smart cars, smart homes etc. Generally, this is the result of
the hardware evolution and the development of new software algorithms. The arising
question is: how should we interact with all these smart devices? The common sense
answer is: as natural as possible. The Natural User Interface (NUI) principle is that
machines should interact more like people do using gestures, speech and other means.
In this context, the use of hand as a direct input became an appealing interfacing
method. The new trend is to develop touchless interfaces, which use no gloves or
other sensors connected to the hand.
The hand gesture application domains are varied and new application areas emerged

in the last decades. One of these is vehicle telematics. In [1], the authors study the
use of hand gestures to control telematics. A secondary task is to reduce the driver
distraction and allow him to focus on the primary task of driving. A study result
of Virginia Technology Transportation Institute concluded that 80% of all crashes
involved driver distraction in the three seconds prior to the incident [19]. Mobile
phones and telematics secondary tasks were associated with the highest frequency of
distraction-related crashes and near-crashes. The crashes risk may be reduced and
substantial safety benefits can be added by using gesture recognition systems. The
driver no longer has to take his eyes off the road to operate conventional secondary
controls [46, 47].
In desktop and tablets PC applications hand gestures can replace the classical mouse

and keyboard [58] or the touchscreens. Pen-based gestures are used in desktop com-
puting tasks, like manipulating graphics and editing documents [14]. Mouse gestures
are also used for various applications, including web browsing tasks. Recently eye-
Sight introduced gesture recognition Technology for Android Tablets, Windows-based
Portable Computers and iPads. The latest release allows the iPads users to browse
the “*. pdf” documents and eBooks with simple swipes of the hand.
The medical field is one of the newcomers which could potentially rely on hand

gesture recognition technologies. For example, the need of sterile interfaces could push
forward the development of these computer based technologies. Hand gesture based
interfaces, that use no direct touch may be used to replace touchscreens from hospital
operating rooms. A system that allows the doctors’ hand to remain sterile while
manipulating digital images during surgery is proposed by [61]. Another advantage of
the system is closely related to the fact that doctors were able to stay in place during
the entire intervention. It was no longer needed to move to the main control wall since
the commands were performed using hand gestures.
In [24], one of the earliest systems which enables gesture-based interaction between

surgeon and operation room equipment is proposed. The developed system is a non-
contact mouse and allows surgeons to perform standard mouse functions like pointer
movement and button presses with hand gestures.
Hand gestures are used in virtual and augmented reality applications to achieve
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natural human computer interaction. By using hand gestures, one can manipulate
realistically virtual objects [34] and assembly them [49], or can navigate around the
3D information space such as the nodes of a graph [45], arranging them and choosing
the focus nodes. In many augment reality application markers are used. These markers
are patterns printed on objects, easily trackable using computer vision. In [10], the
authors used markers and hand gestures to select and manipulate objects on an AR
display.
In robotics, the hand gestures can control the arm and the hand movement of

a robot to pick up and manipulate real world objects and also to guide the robot
movement through the real world [23, 37, 62].
Nowadays the hand gestures are used for remote control of TV sets and DVD players

[35]. In [32] a report regarding the possibility of using gestures to control domestic
appliances is presented. Other application fields for hand gesture are computer games
[31] and sign language. Specifically, sign language for the deaf has received significant
attention in the gesture literature [39, 56, 60], etc.
Hand gesture recognition approaches have been usually divided into two main cate-

gories: model based and view based. Model based approaches [17, 57] use articulated
models inspired from computer graphics to estimate the 3D hand pose, while view
based approached rely on pattern classification techniques to derive the hand pose
information based on features extracted from the image. In this chapter, we present
three approaches from the second category ,developed by the authors and discuss the
current trends.
This chapter is organized as follows: In Section 4.2 we give a short overview regard-

ing the features used for hand gesture recognition and tracking, while in Section 4.3 we
present contributions in hand gesture recognition from monocular cameras. Section
4.4 describes view based approaches using 3D cameras, including some results of the
authors and some conclusions are drawn.

4.2 Features for Hand Gesture Recognition
4.2.1 Motion Cues
Motion is an important cue in many computer vision applications. There is a huge
amount of work devoted to motion estimation and it is out of the scope of this section
to review it. Background subtraction is a widely used and powerful method in video
surveillance, which has been also applied successfully in several HCI applications with
controlled lighting or indoor environments. In spite of its limitations, background
subtraction can be a valuable tool in a multi-cue hand tracking application. The basic
assumption in foreground/background segmentation is that the background is more
stable than the foreground. While being generally more stable than the foreground,
the background is far from being constant. Static background appearance varies with
illumination changes and shadows cast by moving objects. Objects removed from the
background or new objects placed in the scene also cause changes of the background.
Outdoor scenes often contain dynamic backgrounds, such as water or waving trees, but
dynamic backgrounds can be also encountered indoors (computer screens, escalators
etc.). Due to these problems, after initial estimation, the background model needs
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continuous updating during its use. Background updating can be successful in coping
with gradual changes, but it fails in responding instantly to sudden changes, such
as those produced by moving clouds or switching bulbs. There are several methods
to reduce the effect of fast illumination changes. One major idea is to use texture
information instead of intensity and/or color. Such solutions were discarded since
texture change based segmentation produces less accurate contours of the extracted
objects. Another assumption which is currently used in motion detection is that
all changes in the image are produced by moving objects, which is generally useful,
although not always true.
Background subtraction works by comparing on a pixel by pixel level the current

frame with a reference background model. All significant changes of the current frame
with respect to the background model are attributed to foreground objects. Within
the scope of this work, it is important to note that, fortunately, all the mentioned
factors produce false positive rather than false negative foreground detections. In
this sense, background subtraction can be viewed as a method to fast discard regions
which do not belong to the tracked object. Most of the false positive detections can
be eliminated easily by making use of the additional color and shape cues. A more
difficult problem is caused by skin colored background areas. Foreground detection in
such areas is likely to fail (camouflage problem), thus producing false negative pixels
in foreground detection. To deal with this problem, one can use edge detection in
all skin colored regions. This makes possible to detect hands, even when they move
over skin colored regions, where foreground segmentation may fail or, for example,
when the tracked hand moves over a skin colored foreground region, like the face of
a person. Relevant and detailed surveys on background extraction methods can be
found in [5, 6]. Due to the real time constraint, one should choose a fast approach
for extracting motion cues, like the one based on codebooks, proposed by [29]. One
important advantage of the sparse modeling over purely probabilistic approaches is
the ability to model dynamic backgrounds, thus preventing potentially false positive
detections caused by such backgrounds.

4.2.2 Skin Tone Cues
Since the object of this chapter is hand detection a powerful cue can be represented
by the skin tone. A skin tone detector having good results in different illumination
conditions is desired. It is important that the skin tone detector be invariant to the
user, meaning that any type of skin zone is detected regardless of the users’ skin color.
The real time aspect is of great importance for a human-computer interface, too. So,
the choice of skin tone detector has to be made with respect to these aspects. There
are a lot of models proposed in the dedicated literature regarding skin tone detection.
Many of them are based on training an elaborated model for the skin. Some examples
of approaches presenting good results are based on Gaussian mixture models [6], beta
mixture models [5], nonparametric models [29], or based on the more recent random
forest classifier [28]. The main drawback of these models is that they lack in terms
of time efficiency, making them not suitable for a real time constrained framework.
A more suitable approach could be the one proposed by [11]. The method uses a
reduction of space dimensionality from the classical RGB space to a 1D space. The
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skin cluster is obtained by imposing predefined thresholds on an error signal issued
from the difference between the luminance and the maximal non-red component. The
space dimensionality reduction is implicit with the use of this error signal. The skin
cluster thresholds are chosen optimally after extensive testing of the approach on a
large image database. One advantage of this approach is that the skin tone samples
used to compute the thresholds are chosen from the entire range of races and extreme
variations of lighting conditions.

4.2.3 Edge Cues
Edges play an important role in vision, as demonstrated by our ability to interpret line
drawings. To a certain degree, edge maps are invariant to illumination changes. They
can be extracted at a low computational cost and contain essential shape information.
Like other cues, edge detection has its own problems. Edge detection produces many
spurious edges due to its sensitivity to noise and it fails to detect blurred edges. This is
a potential problem, considering motion blur occurring with fast hand motion and low
speed cameras. The reason to introduce edge cues in such a framework is to alleviate
problems caused by camouflage.

4.2.4 Invariant Features
In [3, 12, 36] Haar like features are used for the task of hand detection. Haar like
features focus on the information within a certain area of the image rather than each
single pixel. To improve classification accuracy and achieve real-time performance,
AdaBoost learning algorithm that is able to adaptively select the best features in each
step and combine them into a strong , can be used. The training algorithm based
on AdaBoost learning algorithm takes a set of “positive” samples, which contain the
object of interest and a set of “negative” samples, i.e., images that do not contain
objects of interest.
In [13] the ARPD descriptor (Appearance and Relative Position Descriptor) is pro-

posed. This descriptor includes color histogram, relative position information, and
SURF [4]. The process of constructing ARPD includes two steps: extracting SURF
keypoints and color histogram from images, and computing relative-position informa-
tion of every keypoint within images. The relative-position information is also included
as part of ARPD. The ARPD was used in the BoW representation. The BoW was
used to detect and recognize hand posture based on sliding-window framework. To
meet real-time request, several approaches were proposed to speed up hand posture
recognition process.
In [20], Maximally Stable Extremal Region (MSER) detector and color likelihood

maps are used for hand tracking. Such a combination allows performing repeated
figure/ground segmentation in every frame in an efficient manner. The MSER detector
is one of the best interest region detectors in computer vision [41]. MSER detection is
mostly applied to single gray scale images, but the method can be easily extended for
analysis of color images by defining a suitable ordering relationship on the color pixels.
In general the MSER detector finds bright connected regions which consequently have
darker, values along their boundaries. The set of MSERs is closed under continuous
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Figure 4.1: BoW representation.

geometric transformations and is invariant to affine intensity changes. Furthermore
MSERs are detected at all scales. Therefore, due to these properties, MSER detection
is suited for segmentation purposes.
In [16] Bag-of-Words representation (BoW) and SIFT features are used. In a typical

BoW representation, “interesting” local patches are first identified from an image,
either by densely sampling, or by an interest point detector. These local patches,
represented by vectors in a high dimensional space, are often referred to as the key
points. The bag-of-words methods main idea is to quantize each extracted key point
into one of the visual words, and then represent each image by a histogram of visual
words (see Fig.(4.1)). A clustering algorithm is generally used to generate the visual
words dictionary. In [16] k-means algorithm has been used for clustering. A multi-class
SVM was used to train the classifier model. In the testing stage, the key points were
extracted from every image captured from the webcam and fed into the cluster model
to map them with one (Bag-of-words) vector, which is finally fed into the multi-class
SVM training classifier model to recognize the hand gesture.

4.3 The Proposed Approaches

4.3.1 The Compositional Approach to Hand Gesture
Recognition

Bag of Words methods and compositional methods become more and more popular
in hand gesture recognition. These techniques have been studied in many diverse
fields such as linguistics, logic, and neuroscience, but compositionality is especially
evident in the syntax and semantics of language, where a limited number of letters
scan form a huge variety of words and sentences. In computer vision these techniques
are used in the context of a general problem: categorization. Using these techniques
we address also to the semantic gap that exists between the low level features and
high level representations. The hand posture is no longer modeled as a whole. These
characteristic regions are assembled to form compositions; these compositions at their
turn can be grouped in compositions of compositions and so on. The invariant features
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allowed us to model the hand as collection of characteristic parts. Key points or
characteristic regions are extracted. Using such features the hand gesture is split in
simpler parts which are easier to recognize. This approach has major advantages:
even if some parts are missing gestures still can be recognized, so there are robust to
partials occlusions, changes in view point and considerable deformations.
In our work we used a compositional technique for hand posture recognition. A hand

posture representation is based on compositions of parts: descriptors are grouped
according to the perceptual laws of grouping to obtain a set of possible candidate
compositions. These groups are a sparse representation of the hand posture based on
overlapping subregions.
The detected part descriptors are represented as probability distributions over a

codebook which is obtained in the learning phase. A composition is a mixture of the
part distributions. From all candidate compositions, relevant compositions must be
selected. There are two types of relevant compositions: those compositions that occur
frequently in all classes and also those which are specific for a class. The category
posterior of compositions is learned in the training phase, and it is a measure of rele-
vance. The entropy of the class posterior helps to discriminate between classes. A cost
function is obtained by combining the priors of the prototypes and the entropy. The
process of recognition is based on bag of composition method, where a discriminative
function is defined.
Even if the proposed method is a general one, for different applications it is still

important what features are used for the sparse hand posture representation.

4.3.1.1 Feature extraction

The first question according to compositional technique in our case is how the hand
can be represented in order to be decided which image locations had to be captured
and which to dispose of. The main idea is that each hand posture can be described
by: the V shapes between the fingers when these are apart, the curve shapes which
correspond to the fingertips and the straight lines for the finger length. Each hand
pose can be defined as a combination of these shapes. Based on the relations among
them, the hand pose can be recognized. It is important how these shapes are oriented
and which their relative position to each other is. The second question is how these
relevant image regions can be represented.
The RGB hand posture image is converted to a gray scale image, and then the Canny

edge detector is used in order to extract the hand contours. Salient image locations are
detected by using Harris interest point detector on hand contours. The Harris interest
point detector is used on hand contours in order to have a low computational cost, and
edges are able to capture that information which is enough and useful for our brain-
view processor to recognize the object. Quadratic patches of size 20 × 20 pixels are
extracted around each Harris interest point to capture discriminative local information.
The patch size is chosen so that it captures the fingertip. For each extracted patch, its
correspondent in the RGB image is searched and a two bin color histogram (skin-non
skin) is extracted. In this work the goal of the 2 bin color histogram is to detect
different types of regions around the interest point assuming that the background is
extracted.
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Figure 4.2: Compositional model for statistical pattern recognition.
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(a) (b)

Figure 4.3: (a) the 4 orientations considered, (b) contour points contribution to his-
togram.

The contour orientations histogram with four bins is also extracted. Using Canny
edge detector the obtained contours are thin and each contour point contribute to the
histogram with one, two (as it can be seen in Fig.(4.3b)) or more local directions.
We define:

N (i) =
{

1, EDGE = True

0, ELSE
(4.1)

The orientation of a contour point is defined:

Ox,y (i) =
{
i, N (i) = 1
0, ELSE

(4.2)

The histogram is computed according to Eq.(4.3)

h (i) =
∑

x,y∈region
Ox,y (i) (4.3)

Then the relative direction of the interest point is computed similarly with contour
orientation histogram. For the same patch the number of contour points is also
extracted.
The resulting eight parameters extracted from a patch are used to form a feature

vector, ei. It is important to remark the small dimension of the feature vector, which
is eight.
Hand posture representation is based on compositions of parts, more precisely

patches around a Harris interest point, described by a feature vector ei. Based on
the features vectors ei from all training images, a codebook with relevant features for
all classes is obtained using the k-means clustering algorithm. The codebook is sub-
sequently used in order to assess the similarity of extracted image features to learned
classes of relevant features. The feature classes generated by the clustering algorithm
are not associated with the hand posture classes. These are used to generate an
alternative representation of image parts as presented in the next sections.
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(a)

(b)

(c)

Figure 4.4: Some examples: (a) region type, (b) color histogram with 2 bins and (c)
orientation histogram with 4 directions.

One of the parameters of the k-means clustering algorithm is represented by the
number of clusters k, which was set to five. The main reason why the number of
clusters is set to five is related to the types of patches detected in an image. Actually
there are five types of patches: patches that have more skin and less background region,
patches with more background and less skin region, some patches have the same
percentage of skin and background, there are patches that may have only background,
while some patches may have only skin regions.
According to the Gibbs distribution law, the feature assignment random variable,

Fi, is given by Eq.(4.4).

P (Fi = v|ei) = Z (ei)−1 exp (−dv,σ (ei)) (4.4)

Z (ei) =
∑
v

exp (−dv,σ (ei)) (4.5)

dv,σ (ei) = ‖ei − av‖2 (4.6)
where Fi is a feature assignment random variable, P (Fi = v|ei) is the probability

of feature vector ei to belong to the class defined by the prototype vector av, dv (ei)
is the Euclidian distance of a measured feature ei to a centroid av of class and is a
normalization factor. Equation4.4 is evaluated for all centroids av and the results for
a feature point described by ei are grouped in a part distribution vector:
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di = (P (Fi = 1|e1) , ..., P (Fi = k|ei))T (4.7)

In order to form a higher level of abstraction, image parts are grouped into com-
positions. In order to decide which parts should be grouped to form the candidate
compositions, the principles of perceptual organization are used. To this end, all de-
tected local parts from an image, represented by their part distribution vector, are
grouped with their neighbors that are not farther away than N pixels. This grouping
principle follows the principle of perceptual organization from Gestalt laws, more pre-
cisely the grouping principle of proximity [9]. In this work the number of pixels N is
25. This number depends on the types of objects and compositions that one wants
to form, the number of interest points detected in an image, the number of objects
present in an image and also by the image resolution. In [44] this number is between
60-100 pixels.
Candidate compositions are represented as mixtures of the part (feature point)

distributions as defined in Eq.(4.6). If Γj = {e1, ..., emj}denotes the grouping of
parts represented by e1, ..., emj , and d1, ...,dmj , (where m is the number of vectors
which generate the candidate composition), compositions are then represented by the
vector valued random variable Gj which is a bag of parts with the particular values
given by:

gj = 1
m

m∑
i=1

di = 1
m

m∑
i=1

(P (Fi = 1|e1) , ..., P (Fi = k|ei))T (4.8)

In Eq.(4.8), the number of constituents, mj = |Γj |, is not predefined and can be
different for each composition. It depends on how many parts the grouping algorithm
can combine into composition in a certain region of an image. Note that the repre-
sentation of a composition depends on the type of constituent parts and not on the
number of parts. A composition is represented by the vector gj , which can be thought
of as the average distribution of its parts over the codebook containing relevant parts
for recognition. This model is also robust with respect to variations in the individual
parts.

4.3.1.2 Learning compositions

On the set of all compositions that can be formed, a selection of relevant compositions
must be performed in order to have the discriminative ones and to discard the clutter.
The relevant compositions must reflect a trade-off between generality and singularity.
The goal is to learn a small number of compositions so that estimating class statistics
on the training data becomes feasible. There are compositions which are present in
many classes and there are compositions that help to discriminate sets of classes from
one another, not necessarily one class from all the other.
First, compositions which are specific for a large majority of hand posture classes

are learned. These compositions should be shared among many classes. In order to do
this, in the learning phase, all composition candidates found in all the training images,
represented by average distribution vector of parts, gj , are clustered using once more
k-means clustering. Let πi ∈ Π be the composition prototypes found by clustering.
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Then the prior assignment of the probabilities of candidate compositions to clusters
P (πi)are computed by using the Gibbs distribution:

P (πi = Π|gj) = Z (gj)−1 exp (−dΠ,σ (gj)) (4.9)

Z (gj) =
∑
Π

exp (−dΠ,σ (gj)) (4.10)

In the second stage, relevant composition prototypes for specific classes are selected.
Those prototypes help to distinguish between classes. To this end, the class posteri-
ors of compositions must be estimated. In order to estimate the class posteriors of
compositions a Bayesian approach was used:

P (c|Γj) = P (Γj |c)P (c)
P (Γj) = P (Γj |c)P (c)∑

c
P (Γj |c)P (c)

P (c|Γj) ≈ P (Γj |c)∑
c
P (Γj |c)

(4.11)

where c ∈ ℘, ℘ is the set of all category hand postures. We assume that P (c) are
equal, all classes are used with the same probability. The class posterior is used to
calculate the relevance of a composition for discriminating hand postures. In order
to find a relevance measure, the class posteriors of compositions are learned from the
training data. The relevance of a composition for discriminating hand postures is then
estimated by the entropy of its class posterior:

H
(
PΓj

)
= −

∑
c∈℘

P (c|Γj) log (P (c|Γj)) (4.12)

The entropy is used as a measure of discriminative relevance; since entropy measures
how uniformly a random variable is distributed the entropy should be minimized.
In order to measure the total relevance of a compositional prototype, a cost function

is defined. The cost function combines the prior assignment probabilities of clusters and
the entropy, so it combines the reusability criterion with the criterion that measures the
ability of compositions to discriminate hand postures from one another. The resulting
cost function defined guides the selection of relevant compositions.
In [44] the following cost function was proposed:

S (πi) = − log (P (πi)) + λH (Pπi
) (4.13)

Both constituents of the cost function should be normalized to the same dynamic
range, giving rise to an additional additive constant that can be discarded and to the
parameter λ. Parameter λ defines the balance between the two conflicting demands:
generality and specificity. Its value proved to be very important in practice. Parameter
λ reflects the way the generality and specificity combines in order to select the relevant
prototypes which determinate further the relevant composition used to describe an
image. In this approach, the parameter is estimated by using the inter-quartile range
(IQR) which is equal to the difference between the third and first quartiles. The
proposed robust method for estimating parameter is presented in Eq.(4.14).
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λ = IQR (P (πi))
IQR (H (Pπi

)) (4.14)

From the set of all compositional prototypes a set of relevant composition prototypes
is established through minimization of Eq.(4.13). For all composition prototypes πi,
the cost function is computed and a set of r relevant composition prototypes is selected.
The distance between all compositions and all relevant composition prototypes and
irrelevant compositional prototypes is computed. The image is represented by those
candidate compositions which are closer to the relevant prototypes than any irrelevant
ones.

4.3.1.3 Training step

For all training images the features vectors ei are extracted and k-means is performed
in order to generate the feature codebook, which is the first product of the training
step. Based on feature vectors and the feature codebook, the candidate compositions
are extracted and modeled with their distribution vectors over the feature codebook.
Candidate compositions from all test images are clustered using one more time

k-means, and the resulted composition prototypes are used to form the composition
codebook. Based on the cost function defined in Eq.(4.13), relevant composition
prototypes are learned in the next stage. A set of r relevant composition prototypes
is established. This set is obtained by selecting the prototypes πi with minimal cost
S (πi). Only those relevant compositions which are not farther away from the relevant
composition prototypes than the irrelevant ones are retained.
Each image from the training set is described by those candidate compositions which

are closer to the relevant prototypes than any irrelevant ones (these are the relevant
compositions) and also by the relative rescaled position coordinates of the relevant
compositions.
The hand position may vary from one image to another, so in order to get invariance

to translation the relative coordinates are used. The relative position of the composi-
tions is estimated using the median, not the mean because the median is more robust.
These relative positions are rescaled by means of parameter α.

4.3.1.4 Hand posture recognition

The recognition part is done based on the bag of compositions method. For the new
image, a set of composition vectors hi is computed. These vectors consist of gi
distributions and relative, rescaled position coordinates of the relevant compositions.
In order to get invariance to translation, the relative rescaled coordinates xi, yi, are
used. Hand position is estimated using the median, not the mean because the median
is less influenced by the maximum and minimum values from the set of coordinates
and is more robust. Evaluation of the data set using median is good if half of the data
are correct. For this application more than half of the data is correct because most
of the compositions are generated from interest points located on hand and less from
interest points found on background.
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Figure 4.5: Work diagram for hand posture recognition.
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Figure 4.6: Work diagram for hand posture recognition.

The relative position is rescaled using the parameter α. The evaluation of the
parameter α is a problem of feature extraction and depends on the data characteristics.
Its value influences the space shape.

hi =

 xi
yi
gi

 =

 αxr
αyr

(P (Fi = 1|e1) , ..., P (Fi = k|ei))T

 (4.15)

where xi = α (x− xmedian) = αxr and yi = α (y − ymedian) = αyr.
The range for xr, yr, is larger than the range of probabilities. Both compositions and

their position should have similar importance because the hand posture is recognized
based on types of compositions and their relative position one to another. The value
of parameter α is learned based on the experimental data.
The classification of a new image which is described by vectors is not straight

forward. The number of compositions that describe the testing image differs from
the number of compositions which describes the images from the bag (each image
from the bag might have different numbers of compositions). All components which
describe an image can be seen as a vector; because the length of the vectors is not
equal for all images it is not possible to use traditional classification methods.
The proposed classification method is inspired by point matching used in image

registration, where two sets of points need to be registered and correspondence of
points need to be formed. The two sets of points usually suppose different numbers
of points. The minimum distance from a fixed point ai ∈ A found in set 1, to points
bn ∈ B from set 2 (according to Fig.(4.6)) is shown in Eq.(4.16)

min
∀n

(ai, bn) = d (ai, bI) (4.16)

The minimum distance from point bI ∈ B to points from set 1 according to Fig.(4.6)
is:

min
∀n

(bI , an) = d (bI , ak) (4.17)

In Fig.(4.5) is can be seen thatd1 6= d2, where d1 = d (ai, bI) and d2 = d (bI , ak).
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For each new image only the minimum distance from the training images composi-
tions, to the test image composition hi is computed min

ci

∥∥hk,qv
v − hci

i

∥∥, then all these
distances are sum and normalized according to Eq.(4.18). In the equation, v is the
number of pictures per class, k is the class, qv is the number of compositions from a
class, i is the current image and ci is the number of composition for the test image.

d (c, vk) = 1
#qv

∑
qv

(
min
ci

∥∥hk,qv
v − hci

i

∥∥) (4.18)

d (c, k) = arg min
vk

(d (c, vk)) (4.19)

The reason why the distance from the test image compositions to training images
is not computed is related to the fact that the testing image might have some compo-
sitions which are not specific for that class; it might have compositions as a result of
some interest points detected on background. This is less likely to happen for training
images. These distances are computed for all images.
The discriminant function used in the experiments from this work is defined as:

kopt = arg min
k

(d (c, k)) (4.20)

4.3.1.5 Experimental results and conclusions

In order to prove the power of the compositional approach in hand posture recognition,
two sets of hand gestures were used. The first one consists of nine classes of hand
postures and the second one is represented by six classes, as it can be seen in Fig.(4.7)
and Fig.(4.8).
For the first set of hand postures 30 training images per class are used. The first set

of training images has as background a white wall. The first training set pictures are
taken in natural conditions, no artificial light was added. For the first set the pictures
were taken with Nikon D60 and the images have a resolution of 255 × 171 pixels.
The number of composition prototypes is 20 and the number of relevant composition
prototypes r, which conduct to the best result is equal to 19. The number of relevant
prototypes is 19 because almost all compositions resulted from interest points detected
on hand and just a few are the result of some points detected on background.
The second set of hand postures has six classes. This six hand postures are chosen

by the considerate that they are easy to perform in front of a webcam by a person
while being sited. The pictures from set 2 are taken in different light and illumination
conditions. The background is a white paper. The training set has 60 samples per
class and the testing sets have other 30 training samples per class. These images are
acquired by a Canyon webcam- CN-WCAMNI.
For set 2 the images resolution is 640 × 480 pixels. The number of composition

prototypes is 30 and the number of relevant composition prototypes r, which conduct
to the best result is equal to 28.
In this section the experimental results which prove the potential of the composi-

tional tehniques are presented. Our best result for the first set of images which consists
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Figure 4.7: The 9 classes from set 1.

Figure 4.8: The 6 classes from set 2.
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of nine classes is 96.29%; the best result for the second set of images, which consists
of 6 clases is 99.82%.
The experiments also prove the importance of parameter λ, which makes a trade-

off between general and specific in the cost function defined in Eq.(4.13). The robust
estimation of parameter λ in order to select the relevant compositions prototypes
represents a major asset of this work. Using the robust estimation of parameter λ for
set 1 of images, the recognition rate was 96.29% and using the non-robust estimation
of the parameter λ, the error rate for the same experiment was 93.033%. For set
2 of images the recognition rate was 96.82% when the “leave one out” method was
used. For the same experiment using the non-robust estimation of parameter λ the
recogniton rate was 99.59%. The results obtained for a new set of hand postures
(different from the training images) are: 97.25% when we used the value of parameter
λ estimated with the proposed Eq.(4.14) and 96.15% when its value was estimated
using Eq.(4.13)[44].
Based on relevant composition prototypes the relevant compositions are selected.

Relevant compositions and their rescaled position is used to describe the image. Both
relevant compositions and their positions should have similar importance because the
hand posture is recognized based on types of compositions and their relative position
one to another. In order to have this, the parameter α is introduced and its value is
learned based on the experimental data. The importance of parameter α is shown in
experiments. The best recognition rate 96.29% was obtained for α = 0.02.
The number of relevant composition prototypes proves to have a great influence in

practice. For the first set of hand postures, the best recognition rate, 96.29%, was ob-
tained for 19 relevant composition prototypes. For 14 relevant composition prototypes
the recognition rate decreased dramatically to 29.8%; for 16 relevant composition pro-
totypes the recognition rate was 93%, and for 18 relevant composition prototypes it
was 95.6%.
The main contribution of this work is the compositional approach used to hand

posture recognition. One of the contributions of this work is to carefully select the
basic features (contours, interest points, patches, colour histograms, orientation his-
tograms). These basic features generate the primitive features (the V shape, the
curves and the lines). The primitive features are like Lego components, they are not
extremely diverse, but by combining them it is possible to generate a lot of object
shapes. The object representation is based on compositions of parts: descriptors are
grouped according to the Gestalt law of proximity, to obtain a set of possible candidate
compositions. In order to generate the desired primitive features it was important to
choose the right distance between the parts which are about to be grouped. Can-
didate compositions from all test images are clustered and the resulted composition
prototypes are used to form the composition codebook. Based on the cost function
the relevant compositions prototypes are learned in the next stage. The optimiza-
tion of parameter λ, its robust estimation in order to select the relevant compositions
prototypes represents a major asset of this work.
Based on relevant composition prototypes, the relevant compositions are selected.

Relevant compositions and their rescaled positions are used to describe the image.
Both relevant compositions and their positions should have similar importance, because
the hand posture is recognized based on types of compositions and their relative
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Figure 4.9: General semantic hierarchy.

position one to another. In order to achieve this, the parameter α is introduced and
its value is learned based on the experimental data.
The discriminant function for classification, inspired by the point matching used in

image registration, represents also a contribution of this work.

4.3.2 Hierarchical Semantic Architecture for Gestural Based
Human-Computer Interfaces

In spite of the intensive research activity during the last decades, object tracking in
complex environments remain a challenging task. More specifically, a good tracker
should be able to perform well in scenes containing variable illumination, background
clutter and occlusion. The first task of a good tracker is to avoid target loss. Ad-
ditionally, in HCI applications based on dynamic gesture recognition, the accuracy of
the extracted trajectories has to be considered. Accuracy is particularly important in
computer gaming applications, where the players have to interact with virtual environ-
ments, or in modern robotic applications, where robots have to learn motion patterns
from humans.
A popular approach addressing the problem of detection and tracking robustness

is to use multiple cues. Every cue has its own strength and weakness. Methods to
combine them in order to maximize system performance are still an open research
problem. Among the most widely used cues we name color, motion, shape, edges,
and depth information. The last one became an attractive option with the progress in
stereo vision and 3D sensing [43]. In this work we rely on the first three cues, although
with the use of additional imaging sensors, the depth cue can be incorporated in a
straightforward manner in the proposed processing scheme.
A second approach dealing with the robustness problem is to use detection and

tracking algorithms which are inherently robust. Our work uses extensively solutions
which are theoretically based on robust estimation methods [50].
Our framework adopts a hierarchical semantic architecture. Good results are re-

ported in computer vision tasks by adopting such architectures [21, 22, 38]. A general
semantic hierarchy is presented in Fig.(4.9). The object is viewed as a collection of
semantic primitives (the semantic layer). We can have one or more semantic layers.
Each semantic primitive is determined by a set of specific cues. A general architecture
can include one or more semantic layers.
Since we treat the case of hand tracking for HCI, we have extensive prior information

about the target. Naturally, a first semantic layer in our approach consists of two prim-
itives in the sense of Fig.(4.9): palm and fingers. Fig.(4.10) presents the flowchart of
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our hierarchical semantic framework. We focus our tracker on active finger detection.
By active fingers we mean the fingers shown stretched by the user. Our approach is
designed to be used in a dynamic gesture based HCI. This is the main reason to focus
our detection on the users’ active fingers. Also, fingers allow a more robust detection
than focusing on the palm. However, a simplified version of palm detection is used
in order to impose a spatial correlation between the two semantic primitives. Prior
knowledge of the target (i.e. hand) allows imposing some spatial constrains: the active
finger zone is placed directly above the palm. Using this spatial correlation, relates
our approach to context aware trackers [64]. To simplify the presentation and for a
better understanding of our framework, we consider the case of the hand with fingers
pointing upwards. Assuring rotation invariance is straightforward.
The finger primitive detection has a hierarchical semantic architecture, also. We

start from the hypothesis that the finger is a collection of geometrically constrained
line segments. This finger detection concept is already used with success by [54].
Our novelty is the proposal of a constrained structure composed of such finger line
segments. We call these structures fingerlets. A fingerlet is represented by a couple of
finger line segments under some spatial constraints. Finger primitives are determined
by the set of fingerlets. Robust estimation methods on fingerlet candidates are used to
segment the finger primitives. The semantic layer consists of three semantic primitives:
motion-, color- and edge-based. Each primitive is defined with respect to the situation
it will respond stronger and it is the most reliable. The primitives defined above are
determined by a set of three cues: foreground, skin and edge cue. In our approach, the
detected cues are represented in the form of binary maps. The foreground binary map
gives the motion primitive. This is the most reliable primitive, and we conjecture that in
non-perturbed tracking situations it will have the strongest and most reliable response,
compared to the other two primitives. Color-based primitives are determined jointly
by the skin and foreground cues. In cases of non-skin-like foreground objects passing
behind the hand, the motion primitive alone is ineffective. In these cases the hand
detection is determined by the color-based primitives. Another challenging situation
for a hand tracker is the camouflage produced by skin-like objects. Background or
foreground objects can present skin tones. When the hand passes over such objects
either motion or color-based primitives are likely to fail. To overcome this situation
the edge-based primitive is defined using the skin and edge cues.
After semantic primitive extraction stage, depending on the situation, the fingerlet

feature space can be corrupted by outliers. A filtering stage is introduced, based on size
(scale) constraints. Prior knowledge of the target is used to define a scale parameter
which takes into account the finger thickness. A suitable range of the scale parameter
is predefined by the prior knowledge of the target combined with specific details of the
HCI’s application. In our application, users are supposed to stand within a known range
of distances from the camera. Moreover, the scale parameter is adaptively estimated
after each fingerlet extraction. It is to be noted that the aforementioned challenging
situations are surpassed only by coupling different semantic primitives with the shape
filtering of the fingerlet feature space. In addition to this filtering, certain outliers
of the feature space are eliminated by the context aware character of our approach.
Palm and finger primitives must obey the spatial constraints mentioned before. For
palm primitive extraction only the foreground and skin cues are used. Also, relative
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size constraints are imposed. Only palm primitives that fall in a certain size range are
considered. The size range is defined with respect to the finger scale parameter and a
priori knowledge of hand geometry.
Fingerlet extraction is performed on the filtered feature space. Valid fingerlet struc-

tures are obtained at this stage. Robust estimation techniques are used further on in
order to segment the finger primitives from the set of fingerlets. At this stage we also
adaptively tune the scale parameter and the Region Of Interest (ROI).
All cues are obtained from low level processing methods applied on a ROI. The use

of a ROI is based on the object persistency assumption, meaning that, if the target
disappears, the most likely it will reappear in the same place. Specific parameters of
the hand model and palm-finger zone spatial correlation are used during tracking to
optimize ROI position and size. We begin by setting the ROI to include the entire
image and then as the hand is detected the size and position is adapted accordingly in
the next frames. If the target disappears, some inertia is attached to the ROI. It will
keep a reduced size for a period of time and then will gradually increase to the entire
image, if the target is not detected meanwhile. A straightforward advantage of this
strategy is the computational time reduction, much needed for real time applications.
Following the idea of computational time reduction, all cues used in this framework
are represented by binary maps. Handling only binary maps in the semantic layer
will decrease the computational complexity. Furthermore, the finger segmentation
block operates on a collection of fingerlets stored in a list. Fingerlet parameters are
initialized with values optimized offline and tuned to new values, based on extracted
hand parameters throughout the hand tracking session.
The system can be in one of the following two states: hand search state and hand

tracking state. The first state occurs before detecting a valid hand. Once a hand was
first detected, the system enters the tracking state. We use a part based tracking-by
detection approach in this work, which is a new trend in the object tracking literature
[51]. One of the major advantages of the tracking by detection approach is the ability
of the system to recover from target losses. This state is not instantly changed if the
hand is temporarily lost. To switch back to the hand search state, the hand has to be
lost for a specified period of time.
There is a major difference between our approach and traditional multiple cue ap-

proaches. In our work, the cues are organized in an intermediary semantic layer and
not directly determining the object detection. A major advantage arises from this
architecture. The semantic primitives complete each other and will act differently in
various challenging situations. It is to be noticed that the proposed framework allows
further improvement and generalization. Based on new sets of cues, one can define
other fingerlet related semantic primitives.
An important aspect of our approach is the cascaded design. We construct the

feature space by detecting fingerlet candidates from different cues. The feature space
outliers are then filtered by scale constraints and by imposing the spatial correlation
between the palm and finger primitives. It is of utmost importance that in the feature
space we detect all the valid fingerlet candidates. This is done by relaxing the pa-
rameters of the corresponding detectors, even if along with valid fingerlets we detect
some false positives. False positives will be rejected in the filtering stages, but false
negatives cannot be recovered later. Also, the robust estimation of the parameters
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Figure 4.10: Hierarchical semantic framework for hand tracking.

and the segmentation will eliminate some of the false positives.
Cue extraction is based on some classical detection approaches presented earlier.

One can experiment with different such extraction methods, our choice for the follow-
ing experiments consists in using [29] for background subtraction, [11] for skin tone
detection and Canny edge detector. In the following we will detail the rest of the
blocks from our framework.

4.3.2.1 Fingerlets features

Motivated by the recent success of part based representations in object categorization
[65] and in object tracking [2], a simple yet effective feature called fingerlet, is proposed
within our framework. It is less general than SIFT, SURF, MSER or FERNS features,
but more focused on the task of hand tracking. Specifically, it is designed to detect
and localize accurately open hand fingers. Moreover, it can be computed effectively
both from binary hand masks and from hand edge maps. Fingerlets are invariant to
translation, rotation and scale. The last property is obtained by means of the feedback
loop of the system, providing an estimate of the finger thickness.
A fingerlet (Fig.(4.11)) is a defined by a set of six points, grouped in two similar

pixel triplets, A,B,C and A′
, B

′
, C

′ . Triplets can be extracted effectively in a single
image scan, either from the binary foreground/background segmentation map or from
the combination of the edge and skin binary maps. In the following, only the horizontal
scan is described. To form a fingerlet, the pixels need to possess the properties given
bellow.
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Figure 4.11: Fingerlet definition.

P1. Pixels of a triplet belong to the same scan line, the second point being the
median of the line segment spanned by the triplet, Eq.(4.21).

yA = yB = yC ,xA < xC , xB = (xA + xC) /2
yA′ = yB′ = yC′ ,xA′ < xC′ , xB′ = (xA′ + xC′ ) /2

(4.21)

P2. This property concerns the relative positions of the pixel triplets. A pair of
pixel triplets has to be spatially close, since it is supposed to belong to the same
finger. On the other hand, the relative position of the pair of triplets has to enable
accurate estimation of the finger’s local direction (angle ϕ) in the discrete image. To
this end, the vertical displacement of the triplets is defined to be half the length, l, of
the line segment AB and the horizontal displacement of the first points of the triplets
is restricted to l, Eq.(4.22).

|yA − yA′ | =l/2,
|xA − xA′ | =l.

(4.22)

P3. In tracking mode, the size property requires the lengths of the line segments
AC and A′

C
′ to be close to the current estimate, Eq.(4.23).

ε < l/l̂ < 1/ε,
ε < l

′
/l̂ < 1/ε,

(4.23)

where 0 < ε < 1 is the maximum ratio between a valid finger length and the
currently estimated model length,t̂ given Eq.(4.24).

l̂ = t̂/ sin (ϕ) (4.24)

The local finger direction is given Eq.(4.25).

ϕ = arg (xA − xA′ , l/2) (4.25)

To account for anatomical finger thickness variations and effects of motion blur,
the maximum normalized difference of an accepted triplet is set in this work to a
relatively large value: 50%. This large value is used because it is more important



98 G. Simion et al.

Figure 4.12: From left to right: original image, palm primitives, motion primitives,
color primitives and edge primitives.

to have low percentage of false negative than false positive detections. The reason
behind this option is twofold. On one hand, most distracting objects have already
been filtered out by motion and skin cues. On the other hand, a fake triplet is only
half of a fingerlet. Another one has to be found, at the required distance. Moreover,
to generate a false finger, the corresponding fingerlets need to form valid clusters, as
explained further on, which is very unlikely (although not impossible) to happen.
Before initial hand detection, the value of t̂ is highly uncertain, because of the

unknown distance to camera and hand size variation between users. In this stage, t̂ is
set to a fixed fraction of the image line length, L, and ε is set at a higher value. In
this work, the values t̂ = L/25 and ε = 33% have been used.
Fingerlets extracted from a video frame are saved in a scan ordered list. Typically, the

list contains only a few hundreds of fingerlets, which is convenient for fast processing.
All operations described in this section are operated on the fingerlet list or histograms
extracted from the list. Fingerlets are extracted in a two-step process. The first step
creates a list of triplets with appropriate length. In the second step, in one scan, the
triplets without a match are discarded, while the triplets with match, as illustrated in
Fig.(4.11), will form a fingerlet structure, defined by spatial coordinates, length and
orientation, Eq.(4.26).

fi = [xBi
, yBi

, ti, ϕi]
ti =li/ sin (ϕ)

(4.26)

These vectors are saved on a fingerlet list. Also, 1D histograms of vector components
hx, hy, ht and hϕ are obtained from the same scan.

4.3.2.2 Primitives

Primitives are represented by fingerlets, hence, the method of primitive extraction can
be implemented with a simple horizontal scan and some simple detection logic, allowing
thus an increased computation speed. Motion primitives (Fig.(4.10)) are obtained from
the foreground binary map. Color primitives are determined in the binary map obtained
by intersecting the skin tone map and foreground map. Finally, edge primitives involve
the skin tone map and the foreground edge map. As mentioned before, these primitives
were introduce in order to prevent the tracker to fail in various challenging situations.
Depending on the application, one can add more primitives related to other situations
not treated in this work. An example of extracted primitives, after imposing the spatial
constraint between palm and finger related primitives, is given in Fig.(4.12).
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One can argue on some detection faults in this example. The idea of this framework
is to be applied mainly in dynamic gestural cases, and as we will see in the following
these detection faults are coped with by other processing blocks of the framework.

4.3.2.3 Robust Estimation of ROI and Scale Parameters

a) Scale Adaptation In spite of the filtering steps making use of motion, skin,
edge and size cues, some of the detected fingerlets may not belong to real hand
fingers. Within the framework of parameter estimation, such samples, not actually
belonging to the object of interest, are named outliers. In the presence of outliers,
the simplest parameter estimator, which is the sample mean finger thickness extracted
from fingerlets, may be biased, if outliers are not symmetrically distributed around the
sample mean. The possibility of having “conspiring” outliers cannot be ruled out, as
fake fingerlets can be generated by (elongated skin colored, moving) objects.
There are many robust estimation methods used in computer vision. In this work, we

use nonparametric probability density estimation to find a maximum likelihood (ML)
estimate of the finger thickness. The approach can be thought of as a particular case
of an M estimator, as pointed out by [15]. Our estimator is based on the assumption
that no other object generates more valid fingerlets than the user’s hand. To make
this assumption as realistic as possible, the tracker is supposed to be initialized with
a frontal view of the hand with stretched fingers. The ML estimate of the finger
thickness is defined in Eq.(4.27).

t̂ = arg max
t

(p (t)) (4.27)

where p(t) is the probability density of finger thickness t. A widely used method
to find maxima of the probability density function is the mean shift algorithm [15],
which is a gradient ascent optimization method. Starting from any point in the feature
space, it converges to a local maximum of the probability density, estimated from a
finite number of data samples. Probability density estimation from a finite number of
samples is based on a kind of interpolation carried out by means of a kernel function.
For 1D data, it can be written in the form of Eq.(4.28):

p (x) = 1
N

N∑
n=1

K [(x− xn) /s] (4.28)

where K () is the kernel function and s is a scale parameter, controlling the degree
of smoothing. The mean shift finds the location of a maximum by iterating until
convergence, Eqs. (4.29) (4.30).

x̂(j+1) = f
(
x̂(j)

)
(4.29)

with

f (x̂) =
N∑
n=1

K
′ [(x̂− xn) /s]∑N

m=1K
′ [(x̂− xm) /s]

xn (4.30)
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Figure 4.13: Scale adaptation example.

where K ′ (t) = dK/dt is the derivative of the kernel. Depending on the scale
parameter, the estimated density may have more local maxima. To find location of the
global maximum, a multi-scale generalization of the mean shift [25] is used, coupled
with the use of the 1D Epanechnikov. In this work, iterations for finger thickness
estimation start with infinite scale s0 and then continue with:

sj+1 = t̂(j)/2 (4.31)

To speed up computation, we use the finger thickness histogram to estimate the
mode of the finger thickness distribution, and it follows that:

f (j) (t̂) =

∑t̂+sj

t=t̂−sj
th (t)∑t̂+sj

t′ =t̂−sj
h (t′)

(4.32)

Figure 4.13 presents an example of scale parameter adaptation. As mentioned
before, the palm scale parameter is defined with respect to the finger scale parameter,
thus becoming adaptive, too. Based on prior knowledge of hand geometry, in our
experiments we considered that the palm scale parameter is 4-6 times the finger scale
parameter.

b) ROI Adaptation Based on the same theory, we find the estimated ML of the
ROI. The ROI anchor, C, is defined by the modes of the fingerlet spatial coordinate
histograms, hx and hy. The scale parameter used is constant and is set to be twice
the estimated finger thickness. The ROI is a rectangular region. The width and height
parameters are set as a function of the finger thickness and the current hand speed,
as illustrated in Fig.(4.14). Notice that the dynamic ROI is asymmetrically extended
from the static size of 10t̂ × 10t̂ with the frame speed components, vx and vy. At
the beginning of the session, the ROI is represented by the entire image. If the hand
is detected the system switches into hand tracking mode and the ROI is adapted
accordingly. It is to be noted that the ROI size is consistent with the scale. When
the scale parameter value is low the ROI size is reduced up to approximately 5% of
the entire image. At the end of the session, when the users’ hand exits the scene ROI
size is gradually increased to the entire image, for the last frames the tracker being
switched again to search mode.



Compositional and Hierarchical Semantic Frameworks for Hand Gesture Recognition 101

Figure 4.14: ROI definition.

4.3.2.4 Hand segmentation

Finger counting is used in the proposed framework for two purposes. The first one is
to provide a safe initialization of the system. Safety means avoiding false starts, while
not failing to detect real hands. In this work, the system switches from hand search to
hand tracking state when a predefined number of fingers, nf , is detected. We found
convenient to work with nf = 3. A second reason why we count fingers is to provide
a fast way to switch from one dynamic gesture to the next one. Alternately, the user
could make a pause between two gestures, allowing the system to detect still periods.
Fingers generate connected chains of fingerlet coordinates, (xBi

, yBi
). The length

of such a chain depends on the distance of the hand to the camera and the finger
orientation. To gain scale independence, the required finger length is expressed in
terms of the finger scale parameter. Their ratio is normally confined to a ratio of
4 to 6. However, to allow for robust detection under partial occlusions, we found
convenient to accept chains with length exceeding only one finger thickness. Again,
the optimal threshold is a tradeoff between false positive and false negative detections.
Fingerlet coordinate chains are segmented in this chapter by means of a morpho-

logical tool, reconstruction by geodesic dilation. In the fingerlet list the markers are
first detected. Fingertip coordinates represent the markers. Considering the vertical
orientation of the hand the uppermost fingertip is detected in a simple horizontal scan.
Connected neighbors are searched then downwards by geodesic dilation. The set of
connected fingerlets represents the segmented finger. Previous fingerlet set is removed
from the list and the same procedure is iterated to find the remaining fingers. The
algorithm ends when the list is empty or a small number of fingerlets is left. At the
same location multiple fingerlets can be present in the list. The right fingerlet for
the segmentation is chosen with respect to angle conservation relative to the previous
fingerlet or starting marker.
Figure 4.15 shows some examples of finger and palm detection for different hand

poses. We can see that the hand tracker has some degree of freedom; slight tilted or
rotated poses are correctly detected.

4.3.2.5 Experiments and discussions

In this paragraph we present some extensive tests that validate our framework. First
we prove that the real time constraint is met. Second, a series of tests demonstrate
the validity of our model in different challenging situations: camouflage, varying illu-
mination and occlusion. Accuracy, needed in a dynamic gestural based interface, is
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Figure 4.15: Detected fingers for different hand poses.

Figure 4.16: Processing time per frame.

proven at the end.

a) Real Time Constraint Figure 4.16 shows the computation speed of our hand
detection framework. In hand searching mode we obtain an average of 5 fps, but
in hand tracking mode we achieved an average computation speed of 11 fps, and
depending on ROI size this speed can increase up to 20 fps. One should note that
poor lighting of the scene increases the computational time. This experiment, and the
ones that follow, were carried out with a laptop webcam (Intel Core2 Duo CPU at
2,5GHz, 2GB RAM, NVIDIA GeForce 8600M GT and 1GB VRAM). Since a processing
speed of 5 fps is not exactly real time we recommend that the framework be used with
some initialization (e.g. a dedicated hand posture to enter the hand tracking mode).

b) Camouflage Motion cue camouflage denotes the situation when a non-skin
tone foreground object passes behind the hand. In this case, in the foreground map a
camouflage situation arises. The motion primitives are unreliable and the problem is
surpassed by the color and edge primitives (Fig.(4.17) first row). Classic camouflage
situation refers to the case of background objects having skin tones. This is a highly
probable situation for HCI applications. Furniture or some other objects most often
are skin like colored. Skin and possibly motion cues are most likely to fail in this
situation. So, it is the edge based primitives that are the most reliable with respect to
classic camouflage (Fig.(4.17) second row).

c) Varying illumination Indoor use of our framework presents the advantage of
being able to control the scene lighting. Nevertheless, depending on the application,
human or some other factors can influence the scene. One straightforward situation
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Figure 4.17: Camouflage tests: motion camouflage - first row; color camouflage -
second row.

Figure 4.18: Experiment concerning illumination changes.

is represented by the dynamic shadows casted by moving neighboring objects. The
illumination change is simulated by tuning the brightness parameter of the camera
(Fig.(4.18)).

d) Occlusions Another type of challenging situation for a tracking system is the
occlusion. Accidentally or not, foreground objects can momentarily hide the target
from the camera. If partial occlusion of the hand occurs it is desirable that the tracker
does not lose at least the uncovered primitives (Fig.(4.19) first row). Figure 4.19
second row illustrates an example of full occlusion of the target by a skin tone object.
It is obvious that this situation will cause target loss by our approach. What we consider
important in such a case is rapid recovery and target detection. In this example the
tracking framework only needs a few frames to redetect the target, independently of
the obstructing object shape or targeted hand pose. This advantage arises from the
tracking by detection character of our approach.
Our approach is different from the model based approaches proposed in tracking

related literature. We do not impose a predefined model and fit it within the tracking
session. However, with some limitations our framework constructs a model of the
hand during the tracking session (e.g. separate detection of palm and fingers). Also,
as already pointed out, our framework addresses mainly to HCI involving dynamic
gestures. As possible application we mention designing communication dictionaries
for remote control.
Another type of tracking algorithms are box based trackers. These approaches
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Figure 4.19: Occlusion experiment: partial occlusion - first row; full occlusion - second
row.

present the drawback of being sensible to attractors with same characteristics as the
target. Instead, our semantic hierarchical framework allows surpassing these situations
by using multiple cues that integrate in different semantic primitives. Other hand
tracking approaches are focused on detecting the hand as a whole and can be thought
as a particular case of box based trackers.
For the sake of simplicity the case of the hand with fingers pointed upwards was

treated here. Hence the horizontal scan of the ROI was considered. One can argue
that the framework lacks in terms of rotation invariance. Fingerlet structures are
characterized also by an angle, which approximates the general hand orientation. The
entire fingerlet set gives a set of angles. Same robust estimation techniques, presented
before, can be employed to estimate a single finger angle value from the fingerlet
set. Considering that between consecutive frames the hand pose does not change
significantly, the previous estimated angle value can be used to rotate the ROI. The
horizontal scan is maintained and the rotation invariance is achieved. If multiple fingers
are detected, a mean estimate of finger angles can be considered as the general hand
orientation.

4.4 New Directions: ToF Based 3D Gestures
Recognition System

Increasing interest for 3D based gesture recognition systems, driven by the potential
applications (medicine, entertainment, automotive, etc.), is justified twofold, at least.
On one hand there are the inherent weaknesses of the 2D systems, e.g., the low
reliability of the segmentation stage – see the problem which appears when background
and skin have similar colors; on the other hand we have the advancements in the
3D range sensor technologies which currently offer a higher accuracy at constantly
decreasing costs.
The modern 3D approaches use either the structured light principle, e.g., [7] or the

Time-of-Flight (ToF) technique [26], although other acquisition methods were also
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reported [40]. In the following, we will briefly discuss ToF based related work, as we
consider it the most promising alternative.

One of the earliest approaches is represented by the work in [8] where they presented
a 3D hand gesture recognition system based on Swissranger SR2, an infra-red ToF
camera. Some key operations are camera calibration and noise reduction using a
median filter on the range data. The segmentation step implies defining a region of
interest (ROI) on the depth information. Next, the resulting cloud of points is fitted
using an ellipsoid in order to obtain a raw estimation of the hand. To determine
the principal axes of the ellipsoid a PCA is performed. A more elaborate approach
is to fit a seven degrees of freedom hand model on the cloud of points with a frame
rate of about 3Hz. No classification accuracy information is provided by the authors.
Obviously, the response does not meet the demands of a real-time functioning.

The goal of the system proposed by [30] is to recognize 12 different static hand ges-
tures using a 3D ToF sensor. Using a simple nearest neighbor classifier, they reported
a classification time around 30ms on a standard PC and a recognition rate of 94.61%.
The chosen evaluation procedure was “Leave-One-Out” using a set of 408 images (12
gesture × 34 persons). The 3D information helps mainly in the iterative seed fill seg-
mentation algorithm. Additionally, depth features are included to distinguish certain
gestures when the 2D projections are identical. Following similar principles (coarse
to fine segmentation, PCA on the feature vectors, nearest neighbor, k-d Tree Based
k-Means Clustering, and the Bayesian Plug-In as classifiers) [55] developed a touchless
user-interface for medical intra-operative applications.

A combination of RGB and ToF cameras for real-time 3D hand gesture interaction
is described in [18]. In this situation, the hand detection is achieved by using a
novel algorithm which uses both depth and color. Hybrid Gaussian mixture model
and histogram-based skin color segmentation are performed in the first stage. Then,
the face is detected and the distance from face to camera is estimated. This way,
the search region is drastically reduced and the hand is detected based on skin color.
Inspired by the work of [63], the classification stage uses a dimensionality reduction
technique based on Average Neighborhood Margin Maximization. A Haarlet-based
hand gesture recognition algorithm is implemented for the case of color, depth and
combined data.

Molina et al. [42], present a system for hand gesture recognition, based on a ToF
camera (SR4000 developed by Mesa Imaging) devoted to control Windows applica-
tions. For foreground segmentation, a mask is generated including at least 20 gray
levels below the brightest one (20 cm from the nearest detected point). Then the
geodesic center of the hand, the length and orientation of the axes of the ellipse fitted
to the hand silhouette and the minimum depth point are used both for extracting ad-
ditional silhouette features and for the gesture classification. The chosen modality to
describe the shape consists in modeling the skeleton of the silhouette although there
are many other possibilities (Fourier descriptors, Zernike or Hu moments etc.). The
system shows remarkable performance, the user independent gesture detection rate
being around 94%.
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Figure 4.20: Selected frames from subject no. 7 - left hand, performing 6 different
hand gestures. UPT-ToF3D-HGDB hand gesture database.

4.4.1 Method for 3d Hand Gestures Recognition
Gesture recognition approaches can be classified according to [27] in at least two
categories. One takes into account just the hand and the fingers and it detects hands,
fists, palms, and fingers. The other category considers the full body or body part
moving gestures, thus, concentrating on the detection of the median axis of the body
part. In the following we will present our ToF based solution for a gesture recognition
system, which can be included in the first category.

4.4.2 The Hardware
Our experiments were made using a leading-edge PMD[vision]® CamCube 3.0 ToF
3D camera [48]. A modulated optical signal sent out by a transmitter illuminates
the scene to be measured. The sensor, PhotonICs®PMD 41k-S2, detects the reflected
light, and determines the phase difference between incident and reflected optical signal
per every single pixel. This enables computing the distance to the target:

d = c× ϕ
4πfmod

(4.33)

where c is the speed of light and ϕ the phase shift and fmod is typically 20KHz [33].
PMD[vision]® CamCube 3.0 is the highest resolution all solid-state TOF 3D camera

worldwide, enabling the real-time capture of distance and grayscale information (200×
200 pixels) at high frame rate (up to 40 fps at full resolution) with superior ambient
light suppression.

4.4.3 3D Data Acquisition
Considering the scarcity of the publicly available 3D ToF databases and the very
high costs for a ToF video camera acquisition, we developed a ToF 3D hand gesture
database, called UPT-ToF3D-HGDB, to support researchers who are willing to test
their algorithms [59]. Current release, described in details in our previous work [52],
contain multiple subjects expressing six static hand poses and four dynamic hand
gestures, as exemplified in Fig.(4.20).

4.4.4 3D Filtering
The first step of our algorithm aims at suppressing the speckle noise contained by
range data. This is done with the help of a 3 × 3 median filter and it is crucial for
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(a) (b)

Figure 4.21: (a) Original and (b) filtered images.

the success of following steps. The effect of the filter is presented in Fig.(4.21a) and
Fig.(4.21b).

4.4.5 Depth Segmentation
Assuming that the hand is the closest object to the camera, the segregation from
the background is done by defining a region of interest in depth and discard any
measurements which do not fall within the predefined range of depth, in our case 7
cm from the closest point. To eliminate possible outliers, the number of points from
the hand volume is counted. If the number of potential candidates from the hand
volume is smaller than a threshold (80 in our experiments), the next closest point is
selected and the operation is repeated.
There are some situations (see Fig.(4.22a) and Fig.(4.22e)) where this procedure

would not provide satisfactory results, more exactly when the extracted cloud of points
do not belong to the same cluster (Fig.(4.22b), Fig.(4.22f)). As one could observe
from Fig.(4.22c) and Fig.(4.22g) other parts of the body (abdomen, the other hand,
head, etc.) could be initially segmented as hand. To solve this, we project 3D points
onto a 2D space. The resulting image is binarized and a set of properties (area,
centroid, orientation, pixel list) are extracted. The number of clusters found in the
hand plane is counted. For each cluster, the number of points is estimated. If the
number of points in a cluster is smaller than a threshold, the cluster is discarded. If
we have more than one remaining clusters, a new analysis is performed in order to
decide which cluster represents the hand. The coordinates of the centroids (which
are the centers of mass of each cluster) are inspected. If these coordinates are not in
the upper half of the hand plane, the clusters are discarded. The final results of the
segmentation step are depicted in Fig.(4.22d) and Fig.(4.22h). The details regarding
the proposed segmenting algorithm are presented in [53].

4.4.6 Delaunay Triangulation
The vast majority of the techniques employed for gestures recognition from 3D data
use depth information, mainly for the segmentation purpose, the feature extraction
step being performed in 2D space. Our approach is different because it relies on
the information provided by the cloud of points itself. In order to obtain the 3D
shape of the hand we perform a Delaunay triangulation (DT) on the available set of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.22: The segmentation steps results: (a),(e) filtered images; (b),(f) the result
of the first segmentation stage; (c),(g) binarized 2D projections - the
center of the clusters are marked in blue and red, the red cluster will be
discarded; (d),(h) the segmented hand.

(a) (b) (c)

Figure 4.23: Delaunay triangulation in (a) 2D, (b) 3D and (c) the free boundary facets
of triangulation.

points. The DT is one of the most popular methods used to the generate meshes
and it satisfies the empty sphere property, meaning that a 3D Delaunay triangulation
does not have any points in the interior of the circumsphere associated with each
tetrahedron (Fig.(4.23)).

4.4.7 Feature Extraction

Some possibilities of geometric features are: surface curvature or normal vectors to
the 3D surface, all of them being considered as local features. We compute the
normal vectors to the surface (Fig.(4.24a)), then map the orientations into spherical
coordinates in order to obtain a three-dimensional histogram of bivariate data (Fig.
(4.24b)).
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(a) (b)

Figure 4.24: (a) Compute and display 3D surface normals as radiating vectors and (b)
Three-dimensional histogram of bivariate data (azimuth and elevation)
binned into a 9-by-7 grid.

4.4.8 Classification
In order to evaluate the proposed approach, we considered 10 persons performing 6
different gestures with 20 frames per gesture, making a total of 1200 3D images se-
lected randomly from the above mentioned UPT-ToF3D-HGDB database. A simple
distance-based classifier calculates the pairwise distance between two sets of obser-
vations followed by a leave-one-out cross-validation. Experiments with various pos-
sibilities in implementing the distance computation, showed that the best results are
obtained by using ’cosine’ distance. Good results were also obtained with ’correlation’,
’cityblock’, ’chebychev’ and ’minkowski’ distances.
Although the preliminary results show lower recognition rates than the state of the

art solutions reported in similar conditions, we are confident that there are a number
of possibilities to increase the system performances, e.g. adding supplementary 3D
features, fine tuning of the ensemble parameters, and, probably the most important
aspect implementation of a more elaborate classification scheme. The SVM, Random
Trees and Localist Attractor Networks are expected to provide better classification
results.

4.4.9 Conclusions
Hand gesture recognition is an active research field, aiming to generate real world
applications within the context of the emerging technologies like pervasive computing,
mobile computing, ambient intelligence etc. Some of these applications are highlighted
in this study. There are two dominant approaches to hand gesture recognition: ap-
pearance based and model based. The work described in this chapter belongs to the
first category, which is more general and computationally more efficient.
Reliable extraction of semantic information from images, in particular the recognition

of hand gestures, have to find consistent ways to deal with inaccuracies of the existing
segmentation and feature extraction algorithms. One possible answer investigated here
is to use a part based representations of the hand. Part based representations have
been used in compositional methods for object categorization, leading to the huge
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popularity of the bag of words and related classifiers. Our pioneering work revealed
the potential of this approach to hand gesture recognition and we strongly believe that
there still is a lot of room for future research and improvement within the compositional
framework to hand gesture recognition.
Another key concept addressed in this work is data fusion. Multiple cues, such as

color, edges, motion, and a custom designed feature for hand detection and tracking,
called “fingerlets” are combined in a hierarchical semantic architecture. Fingerlets are
defined and used with ideas from robust estimation in mind and play an important
role in the success of our method.
A brief presentation of hand gesture recognition solutions based on data acquired

with 3D sensors and some preliminary results of the authors using ToF sensors is
the subject of the last section of this chapter. While advances in computational
capabilities and sensors suggest that solutions based on 3D data are likely to prevail
in the near future, the authors believe that several concepts described in this chapter,
demonstrated on monocular video, are going to be of genuine interest and can be
naturally integrated in the next generations of human computer interaction systems,
including hand gesture recognition.
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