
CHAPTER 11

Should We Consider Adaptivity in Moment-based Image

Watermarking ?

Efstratios D. Tsougenis and George A. Papakostas

The term adaptivity is absent from the state-of-the-art moment-based image water-
marking methods. A question to be answered is whether adaptive watermark insertion
will guide to the enhancement of image's security (concerning a number of require-
ments such as robustness, imperceptibility, complexity and capacity). Initially, the
term adaptivity is being unfold from di�erent perspectives; the selection of the most
quali�ed coe�cients (considering their order and magnitude) for carrying the water-
mark information; the selection of the most quali�ed image region for hosting the
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watermark information; and �nally the optimum calibration of the quantizer param-
eters for embedding the watermark information. An experimental justi�cation of the
need for adaptivity is being presented, highlighting also the classic tradeo� between im-
perceptibility and robustness. Furthermore, a number of solutions for each adaptivity
perspective are presented along with its corresponding analysis (limitations and future
work). To the best of our knowledge, the current chapter constitutes the primary
attempt for highlighting/justifying the signi�cance of adaptivity during moment-based
watermarking process providing also the readers with a number of tools (adaptivity
solutions) that function in gray-scale and color space. Next generation moment-based
image watermarking algorithms should consider and bene�t from the current adaptivity
solutions regarding a high quality security result.

11.1 Introduction

The scope of the present chapter is to highlight the signi�cance of the adaptivity in
gray-scale and color image watermarking algorithms functioning in a transform do-
main. While the speci�c issue has been treated in multiple ways for classic domains
such as Discrete Fourier Transform (DFT) [32], Discrete Wavelet Transform (DWT)
[4] and Discrete Cosine Transform (DCT) [23], an investigation for image moments'
domain is missing despite the enormous amount of works published during the last two
decades [30]. Initially, the term watermarking should be interpreted in order to better
comprehend the role of adaptivity in the process. Therefore, according to Hartung and
Kutter [8], a watermark is a non-removable digital code, robustly and imperceptibly
embedded in the original data, which contains information about the origin, status,
and/or destination of the data. In our case the data that hosts the watermark infor-
mation is a 1× 2D or 3× 2D image matrix depending whether we secure gray-scale
or color images, respectively. One may raise a question on how the watermark infor-
mation can be embedded within the image content without visually a�ecting the host
image. In the frequency domain, coe�cients estimated from the pixel values are being
altered in a way that binary watermark information has been attached to them. In our
case, image moments carry the watermark information and from now on, by the term
coe�cients we will refer to the product of the latter transformation. Multiple quan-
tization methods are applied for attaching the information to the coe�cients; Dither
Modulation (DM) [2] being one of the most commonly used quantizers in the area
and also being the one that the present chapter focuses for addressing the adaptiv-
ity issue. All details on DM process will be given and discussed in an upcoming section.

In terms of watermarking, we can relate adaptivity to the following perspectives:

• the selection of the most quali�ed coe�cients (considering their order and mag-
nitude) for carrying the watermark information

• the selection of the most quali�ed image region for hosting the watermark in-
formation

• the optimum calibration of the quantizer parameters for embedding the water-
mark information
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All of the aforementioned with respect to a number of requirements are analyzed in
the next paragraph.

In details, as for the �rst perspective, the order and magnitude coe�cient values
are strongly connected to the type (coarse or details) and quantity of information they
represent, respectively. Consequently, modifying higher order coe�cients with large
magnitude may result to an extensive distortion of host image's details.

Now considering the second perspective, a highly textured area may enclose greater
amount of information without being suspected in contrast with the plain or edged ar-
eas where even small interventions can be easily detected. As for the third perspective,
adjusting the parameters of the quantizer re�ects to the strength the watermark is em-
bedded (i.e. ∆ parameter in DM quantizer which is the quantization step). Optimum
embedding strength shall prevent the watermarking schemes from situations where
the information is overprotected (high quantization step) or even lacks protection (low
quantization step).

The satisfaction of the basic requirements (robustness, imperceptibility, capacity
and complexity) composes the ultimate scope of an image watermarking scheme. The
interpretation of the aforementioned requirements helps us compose and provide the
readers with a re-de�ned version of proper image watermarking process through the
following Proposition 1:

Proposition 1. A simple implemented/fast (low complexity) watermarking method
incorporates the maximum allowable amount of watermark information (high capacity)
to the host image with respect to its perceptual redundancy (high imperceptibility)
and its tolerance under geometric or signal processing attacking conditions (high ro-
bustness).

However, the interrelationship of the basic requirements Fig.(11.2) generates the tradi-
tional tradeo� existing in image watermarking �eld where uncontrollable manipulations
regarding to one requirement's enhancement possibly leads to an alongside degradation
of another one. Undesired watermarking cases where it is believed that adaptivity may
eliminate, are collected from the performance evaluation on state-of-the-art moment-
based image watermarking methods [30] and presented in Fig.(11.1).

A simple example based on the classic algorithm [40] that takes advantage of Zernike
moments (ZMs) for embedding watermark information, is presented in Fig.(11.1). The
Peak-Signal-to-Noise-Ratio (PSNR) and the Bit Error Rate (BER) (equations of both
of them are later provided) are also included for verifying the algorithm's impercepti-
bility and robustness performance, respectively. The Fig.(11.1a) and Fig.(11.1b) cases
correspond to the results produced from quantizing the higher and lower order moments
estimated from benchmark image Lena, respectively. At this point, we need to recall
that lower and higher order moments basically represent the coarse and details part of
the image, respectively. For case Fig.(11.1a), since higher order moments have been
altered, a higher visual quality is achieved but the ability to secure the watermark has
been decreased (higher order moments are more vulnerable to attacking conditions).
On the contrary, for case Fig.(11.1b), lower order moments satis�ed the robustness
requirement but a�ected signi�cantly the image content (the ring e�ect is visually
recognizable and numerically justi�ed by the low PSNR value). Figure 11.1 highlights
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(a) PSNR = 56.69 dB and BER = 0.26 (b) PSNR = 36.01 dB and BER = 0.22

Figure 11.1: Benchmark image Lena watermarked based on [40] along with the cor-
responding watermarks (boosted using histogram equalization for better
visualization); quantizing the higher (a) or the lower (b) order moments,
we highlight the tradeo� between imperceptibility (PSNR) and robustness
(BER).

Figure 11.2: The illustration of the interrelationship between basic watermarking re-
quirements.

the classic tradeo� between robustness and imperceptibility requirements existing in
the moment-based watermarking algorithms' literature. However, the interrelation-
ship previously discussed is de�ned between four requirements casting a more complex
situation; an attempt to simply illustrate this situation is depicted in Fig.(11.2).

The need for adaptivity in moment-based image watermarking methods has been
studied by the authors recently in a series of works [31, 20, 29]. However, each of these
works treats adaptivity from a di�erent perspective. The present chapter constitutes
the �rst attempt to gather and study all adaptive moment-based systems for gray-
scale and color image watermarking (isolated from the watermarking frameworks). Its
scope is to highlight their signi�cance (and consequently adaptivity's too) from all
perspectives creating a strong base for the other researchers to bene�t and further
contribute; it is believed that the present work is just dealing with the tip of the
iceberg. In Section 11.2 all related works for moment-based image watermarking
are brie�y analyzed, while Section 11.3 summarizes the moments types and their
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properties applied in watermarking. In Section 11.4, the adaptivity issue is partially
justi�ed based on a series of experiments that study the tradeo� between robustness
and imperceptibility through an optimization process. In Section 11.5, a solution for
each aforementioned perspective is presented along with its corresponding limitations
or possible future work. Finally, general conclusions are presented in Section 11.6.

11.2 Related Work

Image watermarking constitutes a large area of research interest starting almost two
decades ago including works of high contribution in the data security �eld. All kinds of
traditional and recent transformations have been applied regarding high performance
solutions. Image moments being one of them have been spread all over the watermark-
ing and authentication community leading to the design of high performance methods.
However, the use of image moments has not been restricted to information carriers
but it has been extended also to them used as geometric distortion estimators or even
descriptors to assess the visual quality of the results. The multi-application of the
studied domain in image watermarking area is brie�y presented hereafter.

11.2.1 Information Carriers

Based on the-state-of-the-art, the most common use of image moments is for car-
rying the watermark information. The invariant properties under several geometric
and non-geometric image distortions of many of the families made image moments an
attractive transformation. Honorably, the �rst work introducing the moment domain
to the watermarking �eld by Alghoniemy and Tew�k [1] should be mentioned. They
applied Hu's [9] seven moment invariants in order to detect the existence of the water-
mark achieving also robustness to RST (Rotation, Scale and Translation) attacks. Kim
and Lee [12] proposed a low complexity and invariant watermarking scheme based on
ZMs, but the two detection thresholds that need to be calculated from a large amount
of images during the insertion process, constitute a quite laborious task. Pawlak and
Xin [21] designed a watermarking method based on LMs but the speci�c algorithm
was time consuming. Xin et al. [40] made a big step in moment-based watermarking
�eld by using the Dither Modulation (DM) [2] which is a special form of quantiza-
tion index modulation. Although the speci�c method embeds multiple bit patterns
by quantizing the ZMS or Pseudo-Zernike moments (PZMs), still the approximation
errors and the computational cost of the corresponding higher order moments do not
allow the embedment of large watermark bit messages. Recently, the majority of the
researchers focused on the discrete moment families that lack approximation errors
and produce higher quality watermarked images. Yap and Paramesran [42] introduced
the Krawtchouk moments (KMs) to image watermarking through a low complexity
process. Nevertheless, the proposed method lacks rotation invariance and manages
to overcome the cropping attack only with the appropriate calibration of watermark's
embedding location. Deng et al. [5] introduced a multi-insertion watermarking process
which is applied to circular image patches via Tchebichef moments (TMs). Although,
the speci�c method shows resistance to cropping conditions, its complexity is high and
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possible small errors in the relocation of the patches may lead to signi�cant errors [18]
during moments' calculation at the detector's side. Li et al. [13] introduced the Polar
Harmonic Transforms (PHTs) in image watermarking �eld proving their low complexity
and high robustness performance. Tsougenis et al. [27] examined the use of Separable
moments (SMs) managing to evaluate their performance in image watermarking. Re-
cently, Singh et al. [25] introduced a novel technique for high capacity watermarking
scheme using accurate and fast radial harmonic Fourier moments. Tsougenis et al.
in [31] managed to take the advantage of the PHTs's properties and eliminate the
adaptivity crucial parameters (order, magnitude). To the best of our knowledge, the
speci�c work constitutes the �rst moment-based image watermarking method that
discusses and deals with adaptivity issue (as from the �rst perspective). Furthermore,
the same authors tried to deal with the adaptivity from the other two perspectives.
In [20], the introduced technique is making use of a simple Genetic Algorithm for op-
timizing Krawtchouk moments' parameters achieving this way a high robustness and
imperceptibility performance.
At this point, it should be noted that all aforementioned algorithms deal with just

gray-scale images. Recently, quaternion image moments designed for color images
have been tested in the watermarking application. Wang et al. [34] proposed a
robust color image watermarking scheme based on local quaternion exponent moments.
The robustness/capacity tradeo� can be highlighted through this work due to the
fact that watermarks are selectively embedded in speci�c areas indicated by feature
points. In addition, the nature of each area is not taken into consideration adjusting
experimentally the embedding strength (lack of adaptivity). On the contrary, in [29],
watermark is embedded adaptively in color images according to third perspective.
The color image is split in non-overlap blocks where local quaternion moments are
estimated and quantized adapting the embedding strength to block's nature.

11.2.2 Geometric Distortion Estimators

The signi�cant loss of information caused by the geometric/desynchronization attacks
has generated the need of a pre-processing step where the geometric distortions are
estimated in order to recover the watermarked image to its original form. A number
of works [35, 33, 46] have followed the same strategy of the trained Support Vector
Machines (SVMs) by image moments in order to estimate the geometric transfor-
mations. Although, the speci�c works present high performance still the complexity
of this combination stays in high levels. On the contrary, Li et al. [44] proposed a
method that straightforward estimates the rotation angle and the scaling factor of
attacked images by only taking into consideration the �rst three lower order TMs of
the original and attacked watermarked images. However, the speci�c work increases
the side information by carrying this number of moments to the detectors side.

11.2.3 Image Quality Assessment

Image moments' high performance in image description inspired Wee et al. [38] to
create an image quality assessment metric based on KMs and TMs. As a matter of fact,
the application of the speci�c metric in image watermarking �eld regarding a better
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assessment of the produced visual quality results, constitutes the latest innovative use
of the studied transformation (trend) [28].

11.3 Image Moments

Image moments are region-based descriptors that correspond to the projection of the
image on a speci�c polynomial base, where the type of the polynomials gives the name
to the speci�c moment family. The computation of a single moment comprises a repet-
itive process of polynomials evaluation for each image's pixel (Eq.(11.1). Theoretically,
the inverse process should lead to a reconstructed image identical to the original one
with respect to the maximum order value (Eq.(11.2)). The major categories of the
commonly applied moment families in watermarking are presented hereafter:

11.3.1 Geometric Moments

The �rst introduced moments are the geometric moments where their projection base
is de�ned by �xy� monomials of several orders. However, their base is not orthogonal
and therefore their information redundancy is very high.

11.3.2 Continuous Moments

Teague [26] introduced the Zernike (ZMs), Pseudo-Zernike (PZMs) and Legendre
(LMs) moments which are orthogonal and manage to overcome the geometric mo-
ments' drawback of redundancy. Nevertheless, their computational instabilities [14]
especially in higher order values lead to undesirable behaviors. ZMs, PZMs and LMs
along with the Wavelet (WMs) [17] and Fourier-Mellin (OFMMs) moments [24] are
the most widely referred in the literature moments which are de�ned in the continuous
coordinate space. Meanwhile, Polar Harmonic Transforms (PHTs), one of the most
recently introduced transformations [41], have the ability to generate rotation invari-
ant features with no numerical instabilities through higher order values, in a simpli�ed
computation framework. PHTs are further divided into three categories, the Polar
Complex Exponential Transform (PCET), the Polar Sine Transform (PST) and the
Polar Cosine Transform (PCT).

11.3.3 Discrete Moments

Tchebichef (TMs) [16], Krawtchouk (KMs) [43] and dual-Hahn (dHMs) [47] moments
being de�ned in the discrete domain, manage to eliminate the coordinates' normaliza-
tion that continuous moments need but lack rotation and �ipping invariances. How-
ever, KMs and dHMs have the signi�cant locality property as being calculated over
speci�c regions adjusted manually by the user.

11.3.4 Separable Moments

Zhu [45] introduced the Separable moments (SMs) which are constructed by combina-
tions of di�erent continuous or discrete orthogonal polynomials. The speci�c moments'
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combinations have desirable image representation capabilities and can be useful [28]
in image watermarking �eld.

11.3.5 Quaternion Moments

During the last decades, the quaternion algebra has been widely applied in Discrete
Fourier transform (DFT) domain representing a variety of color spaces such as RGB
[6], YCbCr [34], CIELAB [32] etc. Despite image moments' close mathematical nature
to DFT, the �rst quaternion moment families have been recently introduced, based
on Fourier-Mellin [7] and Zernike [3] polynomials. However, the speci�c moments
families are calculated based on continuous orthogonal kernels which are de�ned in
the polar coordinate system. Although they present minimum information redundancy
and rotation invariance, their continuous nature generates approximation errors basi-
cally caused by the transformation from Cartesian to polar coordinate system. On the
contrary, the usage of discrete orthogonal polynomials eliminates the speci�c draw-
backs and leads to the construction of a promising group of moment families based
on Tchebichef, Krawtchouk and dual Hahn polynomials. The discrete moments' lack
of rotation invariance has been also satis�ed by Mukundan [15] introducing the Radial
Tchebichef (RTMs) moments where the corresponding discrete polynomials are trans-
formed in polar coordinates. An extension of the speci�c family, along with the rest
discrete ones to quaternion algebra has been recently presented in [10, 11].
Each moment family is named after the type of the base polynomial used during its

calculation process (i.e. dual Hahn Moments (dHMs), quaternion radial Tchebichef
Moments (QRTMs)). For the case of separable moments, the produced families adopt
both the original used polynomial names (i.e. Hahn Krawtchouk Moments (HKMs)).
The polynomials' Kernel function is de�ned as the orthogonal basis that provides to
each moment the ability to describe di�erent part of the image leading to minimum
information redundancy.

11.3.6 Moment's Background

Assuming an original image f (x, y) of size N×N ; the general equation for calculating
orthogonal moments with order n and repetition m has the form:

Mnm = NF ×
N−1∑
i=0

N−1∑
j=0

Kernelnm (xi, yj)× f (xi, yj) , (11.1)

where Kernelnm corresponds to the moment's kernel consisting of the speci�c mo-
ment family's polynomials of order n and repetition m that constitute the orthogonal
basis and NF denotes the normalization factor. The inverse process where the original
image can be reconstructed from a �nite number of moments up to a maximum order
nmax and repetition mmax is presented in Eq.(11.2).

F (xi, yj) = NF ×
nmax∑
n=0

mmax∑
m=0

Kernel∗nm (xi, yj)×Mnm, (11.2)

where (∗) is the conjugation operator.
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Readers may refer to the corresponding papers cited above for an extensive analysis
on the estimation of each moment family, since only basic theory is being given in the
current section for saving space.

11.4 Adaptivity�Experimental Justi�cation

The scope of the present paragraph is to test whether robustness performance of clas-
sic moment-based watermarking algorithms may increase maintaining imperceptibility
in satisfactory levels. The idea is simple; each watermark bit is assigned to the cor-
responding coe�cient with di�erent embedding strength regarding to BER's decrease
and PSNR's stabilization. A Genetic Algorithm (GA) will be applied using a designed
�tness function for the speci�c purpose. GA's scope is to provide the watermarking
system with multiple individual embedding strength values for each host coe�cient.
The optimum result will be compared to the BER performance of the single embed-
ding strength case where the same value of the latter is applied to all host moments;
a process commonly followed by state-of-the-art moment-based image watermarking
algorithms. It should be noted that the same PSNR value should be achieved for single
and multiple embedding strength cases in order to have a fair comparison. However,
the DM quantization process should be �rstly analyzed since the embedding strength
is adjusted by calibrating its quantization step ∆.

11.4.1 Dither Modulation Process

Dither Modulation (DM) is a special form of quantization index modulation [2] which
is applied in image watermarking systems in order to assign one bit to each transfor-
mation coe�cient. Eq.(11.3) shows the application of the DM on the Âpiqimoment
coe�cient:

∣∣∣Ãpiqi ∣∣∣ =


∣∣∣Âpiqi ∣∣∣− di (bi)

∆

∆ + di (bi) , i = 1, ..., L (11.3)

Ãpiqi =

∣∣∣Ãpiqi ∣∣∣∣∣∣Âpiqi∣∣∣ Âpiqi , i = 1, ..., L, (11.4)

where di is the dither function for the i-th quantizer satisfying di (1) = ∆/2 + di (0),
di (0) belongs to [0,∆] range, ∆ is the quantization step and [·] is the rounding oper-
ation. The security level of the embedded information is controlled by the calibration
of ∆ parameter. A higher ∆ value implies a higher security level and vice versa.

11.4.2 Single ∆ vs Multiple ∆s

In order to justify the adaptivity issue, a typical moment-based watermarking method
has been constructed based on commonly applied moment families (ZMs, PZMs and
TMs). The basic steps for message embedment are moments' calculation and DM



262 E.D. Tsougenis and G.A. Papakostas

Table 11.1: List of signal processing and geometric attacks.

Attack Level Description

JPEG 4 levels: 20%, 40%, 60%, 80% JPEG compression
Median 4 levels: 2x2, 4x4, 6x6, 8x8 Median �ltering
Noise 5 levels: 1%, 2%, 3%, 4%, 5% Addition of random noise
Crop 5 levels: 50%, 40%, 30%, 20%, 10% Image symmetric crop
Scaling 6 levels: 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 Image resize
Rotation 9 levels: 5, 10, 15, 20, 25, 30, 35, 40, 45

degrees
Rotation by angles from the �rst
quadrant

quantization which are previously discussed. The embedding strength (∆) is either
di�erent (multiple case) or identical (single case) for each moment coe�cient. The
performance of the robustness requirement is investigated under common signal pro-
cessing and geometric attacks depicted in Table 11.1. The speci�c attacking conditions
are applied by the well-known benchmark Stirmark [22].
A Genetic Algorithm, a tool commonly used in watermarking systems for solving

several optimization problems [19, 20], is applied in order to �nd the optimum set of ∆s
(di�erent for each moment participating in the watermarking insertion procedure). The
speci�c optimization process is applied in multiple ∆s case searching for a suboptimal
set of ∆s that will higher satisfy the robustness requirement. The GA's applied settings
are: population size 30, maximum generations 40, crossover with probability 0.5 and
2 points, mutation probability 0.01 and Stochastic Universal Approximation (SUS)
selection method.
The structure of each chromosome of the GA's population is described in the fol-

lowing Eq.(11.5).

Chi
(
∆i

1,∆
i
2,∆

i
3, ...,∆

i
n

)
, (11.5)

where Chi is the i-th chromosome and ∆i
j is the j-th ∆ value of the corresponding j-

th moment coe�cient from the total of n coe�cients. Each chromosome corresponds
to a candidate optimum set of ∆ values. The GA �nds the necessary number of ∆s
depending on the message length (bits) and applies them to the method depicted in
Fig.(11.3). Thereafter, the traditional measures Peak Signal to Noise Ratio (PSNR)
and Bit Error Rate (BER) are adopted for assessing image quality and robustness
respectively. Finally, the metrics' results are applied to the proposed �tness function
(Eq.(11.6)) in order to evaluate the usefulness of the candidate solutions.

fitness = NF1 × |PSNR− PSNRTarget|+NF2 ×

 1

T

T∑
j=1

(BER)j

 , (11.6)

where T is the number of the attacks applied to watermarked images, NF1 and NF2

are the normalization factors for the PSNR and BER respectively and PSNRTarget
is the speci�c PSNR value that the process needs to achieve through the genetic
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Figure 11.3: The watermarking process in cooperation with the GA.

algorithm. The NF1and NF2 factors are equal to 10 and 100 respectively due to
the fact that the authors need to reach a PSNR value close to the PSNRTarget that
equals to 45 dB. The PSNR and BER metrics are calculated according to Eq.(11.7)
and Eq.(11.8).

PSNR = 10 log10

(
Lmax × Lmax

MSE

)
, whereLmax = 255, (11.7)

BER =
Number of Error Bits

Total Number of Bits
, (11.8)

where MSE is the well-known Mean Square Error of the watermarked image.
The goal of the speci�c experiment is to create two equal quality (PSNR = 45

dB) watermarked images by embedding the same message (5 bits length) either with
single or multiple ∆s. In order to create the speci�c condition, the single case's ∆
value is derived through a trial and error process, based on traditional moment-based
watermarking methods. Thereafter, mean BERs from both cases are compared regard-
ing the results that will experimentally justify authors' assertion about the necessity
of moments' adaptive handling during information embedment. The implemented
justi�cation procedure is graphically presented in Fig.(11.3).
The tested benchmark images and the simulation results of the commonly applied

moment families (ZMs, PZMs, TMs) for both cases are presented in Fig.(11.4) and
Table 11.2 respectively.
Based on simulation results of Table 11.2, it can be clearly concluded that the mul-

tiple ∆s case outperforms the single one. In multiple ∆s case, the mean BER for all
moment families are decreased by simultaneously producing the same image quality
watermarked images. Therefore, the following Proposition 2 can be deduced:
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(a) (b) (c)

Figure 11.4: Benchmark images (a) Lena, (b) Peppers and (c) MRI.

Table 11.2: Mean BER for watermark embedment with single or multiple ∆s.

Lena Peppers MRI

Single Multiple Single Multiple Single Multiple
ZMs 0.14 0.07 0.19 0.09 0.35 0.20
PZMS 0.19 0.14 0.22 0.17 0.30 0.18
TMs 0.21 0.17 0.27 0.25 0.23 0.24

Proposition 2. The robustness performance of a moment-based watermarking method
can be signi�cantly enhanced applying di�erent quantization step to each host coe�-
cient.

Our initial assertion that assigning di�erent embedding strength to each host coe�-
cient would result to higher performance has now been experimentally proved. From
now on, researchers working on moment-based image watermarking should concern
adapting to the coe�cient's ability to host information. The current chapter also
provides multiple systems for adaptive moment-based image watermarking, presented
extensively hereafter.

11.5 Adaptivity Solutions

The justi�cation of the need for adaptivity during watermark embedding constitutes
the base and motivation for the upcoming solutions. Recalling the three perspectives
mentioned in Section 11.1, a number of solutions are presented; one for each perspec-
tive. The authors motivated by the worthwhile results in Table 11.2, made the next
research step and confronted the adaptivity issue through the upcoming solutions.
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11.5.1 First Perspective: Independent of Signi�cant
Parameters

A �rst solution to the adaptivity issue is provided by the authors in [31]. The idea
arose after examining the properties of the PHTs recently introduced in the watermark-
ing community showing promising behavior. However, the speci�c transformation has
been used simply as information carrier avoiding any further examination of their prop-
erties. At this point, we should highlight the signi�cance of the order and magnitude
parameters in moments' estimation. The order and magnitude values represent the
quality and quantity of moment's carrying information respectively. Higher level order
values and magnitudes correspond to large amount of image details in contrast with
lower levels that correspond to small amount of coarse image information. These sig-
ni�cance parameters generate the need for special handling of each coe�cient which
should be adaptively quantized with respect to its order value and magnitude. The
scope of the present and also the rest adaptivity solutions is to prevent the watermark-
ing schemes from situations where the information is overprotected (high quantization
step) or even lacks protection (low quantization step). A question will be answered
shortly is whether a combination of PHTs and DM satisfy the need for adaptivity.
The proposed quantization process, independent of the signi�cant parameters, is de-

veloped based on a theorem of Xin el al. [40]. According to the latter, given a user de-
�ned image quality (PSNRTarget) the corresponding ∆ value can be straightforward
estimated. Consequently, the image quality is strongly connected to the embedding
strength as presented in Eq.(11.9). Readers should consider though that the speci�c
equation has been solved, based on properties of circularly orthogonal moments.

∆Gen = 255

[
10PSNRTarget/10

24

L∑
i=1

NF

]−0.5

(11.9)

From the generalized form of Eq.(11.9), where NF corresponds to the Normalization
Factor of each moment family (provided in the corresponding papers), one may com-
pute the ∆ parameter for every circular moment transformation. The corresponding
forms of Eq.(11.9) for the case of the circular moment families are as follows:

ZMs : ∆ZM = 255

[
10PSNRTarget/10 π

24

L∑
i=1

(ni + 1)
−1

]−0.5

(11.10)

PZMs : ∆ZM = 255

[
10PSNRTarget/10 π

24

L∑
i=1

(ni + 1)
−1

]−0.5

(11.11)

PCET : ∆ZM = 255
[
10PSNRTarget/10 π

24
L
]−0.5

(11.12)

PST : ∆PST =

{
255

[
10PSNRTarget/10 π

24L
]−0.5

n = 0

255
[
10PSNRTarget/10 π

48L
]−0.5

n 6= 0
(11.13)

PCT : ∆PCT =

{
255

[
10PSNRTarget/10 π

24L
]−0.5

n = 0

255
[
10PSNRTarget/10 π

48L
]−0.5

n 6= 0
(11.14)
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where ni is the order value of the speci�c moment family and L is the total number
of moment coe�cients taking part in the watermarking process.

According to Eq.(11.10) and Eq.(11.11) it can be clearly concluded that n (the sig-
ni�cance parameter) contributes in the watermarking process through ∆'s calculation.
The speci�c connection between order value and the traditional moment families sets
strong constraints to the watermarking process. Any scheme trying to embed adap-
tively information through ZMs or PZMs should seriously take into consideration the
order parameter. On the contrary, the calculation of ∆ values for PHTs is independent
of n (Eqs.(11.12 - 11.14)), an outcome that constitutes a signi�cant observation of
this study. Coe�cient's magnitude constitutes the second signi�cance parameter and
its value represents the amount of information carried by the coe�cient. Based on the
∆ calculation process of traditional moment families (Eqs.(11.10) - (11.11)), it can
be easily concluded that the speci�c parameter is completely avoided. As a matter
of fact, either large (Magn1 = 100) or small (Magn1 = 1) magnitude coe�cients
which are quantized with the same ∆ values (i.e. ∆ = 3), lead to overprotection or
lack of protection of the embedded bits, respectively. On the contrary, PHTs have the
advantage of producing only small magnitude coe�cients that basically contain simi-
lar amounts of information. The speci�c behavior has been experimentally justi�ed in
[31] where random groups of the same number of PHT coe�cients resulted to visually
similar images after reconstruction process. Therefore, no additional handling for the
second signi�cance parameter is needed for PHTs. In addition, the insecure random
selection of host coe�cients that previous state-of-the-art algorithms deal with is now
eliminated.

11.5.1.1 Limitations / Extensions

Although, the speci�c solution does not take advantage of the signi�cance parameters
for adapting to moment's hosting ability, the elimination of them creates a safe en-
vironment that is still considered the �rst adaptive attempt for moment-based image
watermarking algorithms. However, a number of signi�cant limitations should be fur-
ther discussed. The calculation process of ∆ is based on the linearity and symmetry
property of the circular orthogonal moments (Appendix A of [31]). As a matter of
fact, it cannot be applied to watermarking methods that use discrete orthogonal trans-
formations such as TMs. The transformations' properties that belong to the speci�c
category should be further examined in order to construct a new form of ∆ calcu-
lation process. The strong connection between the proposed adaptive quantization
and traditional metric of PSNR should be highlighted at this point. According to the
state-of-the-art, the speci�c metric is commonly applied assessing the visual quality
of moment-based image watermarking schemes. Although di�erent kinds of metrics
simulating the HVS properties [20] exist in the literature, the proposed ∆ calculation
process is strongly connected with the properties of PSNR.

11.5.2 Second Perspective: Optimum Host Area

The solution for the second perspective arises from the use of KMs' locality parameters
(p1, p2). The latter provide the user with the ability to de�ne the spatial location of
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Figure 11.5: Proposed watermarking via genetic optimization.

moment's estimation moving horizontally or vertically within the image range. The
speci�c ability motivated the authors in [20] to transform it into an adaptive process for
watermark's insertion. With the help of a simple GA, the most quali�ed location with
respect to robustness and imperceptibility requirements is identi�ed. Consequently,
the image watermarking procedure is de�ned as an optimization problem, which is
described by the following formula:

min
p1,p2,∆k,ni,mi

( f ) (11.15)

Based on Eq.(11.15), the ultimate goal is the minimization of an objective function
f which is highly dependent on the set of parameters (p1, p2,∆k, ni,mi). Recalling
that p1 and p2 are the locality parameters of KMs, ∆k are the quantization steps of DM
(or the embedding strength as concerned the watermarking process) and ni, mi are
the order and repetition values of moments' estimation. In terms of watermarking, k
and i de�ne the number of multiple embedding strengths and the number of estimated
moments, respectively. The optimization procedure is illustrated in Fig.(11.5).

As it is depicted in Fig.(11.5), the main processing step dealing with the water-
marking procedure is the �tness assignment that measures the appropriateness of a
candidate solution (set of parameters). This �tness is assigned by applying speci�c
objective function incorporating the quality of the watermarked image and the �delity
of the extracted watermark information. Before examining the proposed �tness func-
tion for optimizing the system, the metrics applied for imperceptibility and robustness
assessment should be described. For image assessment, a group of �ve metrics is com-
posed comprising the classic PSNR [8], the most recent Structural Similarity (SSIM)
[37] and Universal Image Quality Index (Q) [36] along also with the moment-based
Tchebichef (QT) and Krawtchouk (QK) Moments Quality Index [38]. The visual qual-
ity and BER (robustness) results work in concert into the �tness function for evaluating
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the suitability of the solutions provided by the genetic algorithm.
Although future researchers that follow the speci�c adaptivity solution may con�gure

the GA in multiple ways, the original settings applied in [20] are: population size
50, maximum generations 50, crossover with probability 0.8 and 2 points, mutation
probability 0.01 and Stochastic Universal Approximation (SUS) selection method. The
�tness function which is used to evaluate the appropriateness of each candidate solution
takes two forms depending on the type of image assessment metric applied.
In this context, the �tness function (FA) in the case of the PSNR index is de�ned

as:

FA = SF1 × |PSNR− PSNRTarget|+ SF2 ×

 1

T

T∑
j=1

(BER)j

 , (11.16)

where T is the number of attacks encountered in the procedure, SF1, SF2 are scaling
factors equal to 10 and 1 respectively, BERj is the BER of the j-th attacked image
and PSNRTarget is the desired PSNR value (45 dB). The incorporation of the target
PSNR transforms the optimization to a constrained procedure in order to ensure a
minimum of image quality that must be acquired.
For the cases including the rest image assessment metrics, the �tness function (FB)

takes the following form:

FB = SF1 × |1− IQ|+ SF2 ×

 1

T

T∑
j=1

(BER)j

 , (11.17)

where IQ is one of the aforementioned quality indices (except for PSNR) and the
scaling factors take the same values with Eq.(11.16). Although one can examine all
aforementioned metrics, the present chapter encourages the use of SSIM metric, since
the experimental results in [20] highlighted SSIM's stable and high performance.

11.5.2.1 Limitations / Extensions

The basic scope of the current adaptivity solution is to identify the optimum image area
for hosting the watermark information with respect to robustness and imperceptibility.
Despite the signi�cant enhancement of the aforementioned requirements, the current
solution su�ers from high complexity. The GA takes su�cient time to converge to
the optimum solution, a situation that could prevent the extensive use of the speci�c
solution. Moreover, the optimized result is not generic since the optimization process
is dependent to each image's content. Speci�cally, faster and more sophisticated
evolutionary optimization algorithms such as Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO) or any other bio-inspired optimization procedure could be
applied in order to handle more complex search spaces.

11.5.3 Third Perspective: Optimum Embedding Strength

The current solution manages to produce an individual embedding strength for each
8 × 8 image block with respect to the latter's nature. Although the speci�c solution
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has been proved successful for moment-based color image watermarking, it is believed
that similar results will be derived for gray-scale ones. Please consider that color
image watermarking is a more complex problem (3 × 2D matrices to function) and
color space properties are not taken into consideration during embedding strength's
estimation process. In details, the current adaptivity solution is based on the design
of a novel adaptive system that optimizes (o�ine) a generalized version of the logistic
curve based on block's complexity. Then a complementary process (online) adjusts
the embedding strength based on the optimized curves regarding to the enhancement
of robustness and imperceptibility performance [29]. Therefore, the optimization of
the parameters de�ning this �exible logistic function is considered crucial. The form
of the used generalized logistic curve (Richard's curve) is de�ned as:

Y (t) = A+
K −A(

1 +Qe−B(t−M)
)1/v , (11.18)

where A denotes the lower asymptote, K the upper asymptote, B is the growth rate,
v > 0 a�ects near which asymptote maximum growth occurs, Q depends on the value
Y (0) and M is the time of maximum growth (Q = v).
The optimization process handles the pre-mentioned 6 parameters (A,B,K,Q,M, v)

and produces a separate logistic function concerning the block's nature (Plain, Edge
and Texture) where the corresponding embedding strength of the block will be de�ned
afterwards. The ultimate �goal� of the proposed algorithm is the adjustment of three
kinds of image blocks depending on content's complexity that could be assigned with
the appropriate embedding strength based on the optimized logistic curves.

11.5.3.1 Block Classi�cation

Initially, the process that de�nes the complexity of every 8 × 8 pixels sized carrier
block should be presented. Based on a block classi�cation method proposed in [39],
the complexity of its host block is further analyzed in the moment domain. The
image should be �rst converted to gray-scale space in order to block-wisely apply
the traditional canny edge detector. The scope of this method is to estimate the
edginess (pedgel) of each block based on Eq.(11.19) which will be used to estimate
its corresponding embedding strength in the upcoming step (Eq.(11.20)). Based on
two pre-de�ned thresholds (α, β), each block is classi�ed according to the following
analysis:

pedgel =
Nedgels

(Nblock)
2 . (11.19)

where Nblock is the size of the block and Nedgels the number of block's edge pixels.
Considering the aforementioned edginess measure a block is characterized as follows:

BlockType =


Plane, 0 ≤ pedgel ≤ α
Edge, α < pedgel ≤ β
Texture, β < pedgel

. (11.20)

The threshold values (α, β) are empirically assigned as 0.1 and 0.2, respectively [39].
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The presented analysis quanti�es blocks' content complexity based on the number
of contained edge pixels (edgels), a measure that is aimed to be correlated with the
blocks' embedding strength during the optimization process.

11.5.3.2 Optimization process

A data set of 150 image blocks of 8 × 8 pixels size (50 for each block category) is
provided to the GA regarding to the optimization of the generalized logistic curves.
The GA produces 18 parameter values (6 per block category / logistic curve) aiming
to minimize the BER and alongside maximize the PSNR enhancing the robustness
and imperceptibility system's performance, respectively. The structure of the i-th
algorithm's chromosome is de�ned as:

Chi
(
f1

1 , f
1
2 , f

1
3 , ..., f

1
6 , f

2
1 , f

2
2 , f

2
3 , ..., f

2
6 , f

3
1 , f

3
2 , f

3
3 , ..., f

3
6

)
, (11.21)

where
{
fk1 , f

k
2 , f

k
3 , ..., f

k
6

}
with k = 1, 2, 3 (1: plane, 2: edge, 3: texture) are the

six free parameters of the k-th logistic curve. Each chromosome corresponds to a
candidate optimum set of parameter values constructing the three logistic curves (one
for each block category).
It is worth noting that the con�guration of the applied GA is as follows: population

size 20, maximum generations 50, crossover with probability 0.6 and 2 points, muta-
tion probability 0.01 and Stochastic Universal Approximation (SUS) selection method.
Moreover, the optimized �tness function (FA) is identical to that incorporated in the
experiments of the second perspective.
The derived optimized logistic curves are considered for adjusting the appropriate

embedding strength of each image block according to the following form.

∆ =


YPlane (pedgel) 0 ≤ pedgel ≤ α
YEdge (pedgel) α < pedgel ≤ β
YTexture (pedgel) β < pedgel

(11.22)

The ∆ factor which is the quantization step of DM constitutes the embedding
strength of the proposed moment-based watermarking scheme. As a matter of fact, the
curve de�ned ∆ values are provided to the watermarking framework in order to examine
its performance. These steps constitute an o�ine iterative process (Fig.(11.6)) that
terminates when all GA's generations are accomplished.
The best results considering BER and PSNR values indicate the optimum forms

of the logistic curves which are provided to the online part of the framework gaining
signi�cant time. The proposed adaptive process has been evaluated by comparing
the adaptive ∆ case (A∆C) to the single ∆ case (S∆C) where the same ∆ value is
applied to each host block ignoring the blocks' complexity factor.
The quaternion radial moment families (RTMs, RKMs and RdHMs) and a group of

signal processing/geometric attacks are applied in order to test the robustness of the
proposed system. Results in [29] (especially for RdHMs) clearly indicated that A∆C
outperforms S∆C in terms of robustness. Moreover, the fact that the results are pro-
duced based on random blocks of di�erent complexity makes the system performance
stable and independent of the image content (generic solution). Since moment-based
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Figure 11.6: O�ine operational mode of the proposed adaptive system.

color image watermarking is at its �rst steps and adaptivity has been proven as a con-
tributing step, future researchers should be motivated and adopt the current system
enhancing this way their algorithm's performance.

11.5.3.3 Limitations / Extensions

Although the current solution manages to alongside contribute in the enhancement
of the robustness and imperceptibility requirements, the heavy load of computations
strictly connected with QRMs estimation leads to a sacri�ce of the complexity require-
ment. However, the block based approach followed by our algorithm avoids estimating
higher order moments which are time consuming but still the need for faster and more
e�cient methods for QRMs' computation should be expected in the near future. Hav-
ing empirically selected Richard's curve for our solution, there exist multiple other
curves that future researchers may examine searching for a more convenient one that
could better �t to blocks' nature. It should be noted also that the adaptive scheme
has been tested only for the image moment's domain. However, there are no restric-
tions/limitations applying it in di�erent domains such as DCT, DWT and QFT; it is
believed that future transform domain watermarking algorithms may adapt this system
and bene�t from its promising behaviour.

11.6 Conclusion

One of the most signi�cant research �gaps� in the progress of moment-based image wa-
termarking methods is the lack of coe�cient's adaptive handling during the information
embedding process. Initially, the current chapter interprets and justi�es experimentally
the adaptivity issue. Authors propose treating adaptivity from three di�erent perspec-
tives; each one followed by the corresponding solution. The presented adaptive sys-
tems (solutions) focus on eliminating the signi�cance moment estimation parameters,
identifying the most quali�ed area and generate blockwisely an optimum embedding
strength with respect to area's nature based on PHTs, KMs and RdHMs properties,
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respectively. All results presented extensively in the original works [31, 20, 29] in-
dicated that signi�cant enhancement of robustness can be achieved followed by high
level imperceptibility performance. Next generation of state-of-the-art methods should
adopt and bene�t from the presented adaptivity schemes. Conclusively, it is believed
that the connection between image watermarking, moments and adaptivity has been
established. The `goal' of the current chapter is to stimulate researchers working on
moment-based image watermarking area to consider adaptivity.
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