
CHAPTER 7

Application of Fuzzy Rule Base Design Method

Peter Grabusts

In many classification tasks the final goal is usually to determine classes of objects.
The final goal of fuzzy clustering is also the distribution of elements with highest
membership functions into classes. The key issue is the possibility of extracting fuzzy
rules that describe clustering results. The paper develops a method of fuzzy rule base
designing for the numerical data, which enables extracting fuzzy rules in the form IF-
THEN. To obtain the membership functions, the fuzzy c-means clustering algorithm
is employed. The described methodology of fuzzy rule base designing allows one to
classify the data. The practical part contains implementation examples.

Keywords - Fuzzy rule-based systems, clustering, system design

7.1 Introduction
In many situations it is possible to model the system behavior qualitatively using
the expert’s knowledge about the system based on the input and output data of
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the system. The data could be obtained using perfect mathematical modeling, from
expert’s knowledge or from experimental analysis of the system. As these data can
also contain uncertainty, selecting a suitable approach is essential in order to include
any information about the system. In such situations, the system identification can
be done by using a fuzzy clustering technique, which involves grouping of data into
fuzzy clusters of similar behavior, and translation of these clusters into IF-THEN fuzzy
rules.
Clustering [5] is one of the most fundamental issues in pattern recognition. It

plays a significant role in searching for structures in data. Given a finite set of data
X, the problem of clustering in X is to find several cluster centres that can properly
characterize relevant classes of X. In classic cluster analysis, these classes are required
to form a partition of X with a strong degree of association for data within blocks
of the partition and with a weak degree of association for data in different blocks.
However, this requirement is too strong in many practical applications and it is thus
desirable to replace it with a weaker requirement. When the requirement of a crisp
partition of X is replaced with a weaker requirement of a fuzzy partition or a fuzzy
pseudopartition onX, we refer to the emerging problem area as fuzzy clustering. Fuzzy
pseudopartitions are often called fuzzy c-partitions, where c designates the number of
fuzzy classes in the partition.
There are some basic methods of fuzzy clustering. One of them, based on fuzzy

c-partitions, is called a fuzzy c-means clustering algorithm (FCM).
The main objective of the study was to extract fuzzy rules from the numerical data.

The rules obtained constitute a specific knowledge base. Methods of fuzzy rule base
design are widely used in different control processes. They, however, can be adapted
to rule extraction from the numerical data. To accomplish this aim, input data have
to be clustered. The paper employs a well-known FCM algorithm. As a result of
clustering, data characterizing membership functions were derived.
The chapter describes the method employed to acquire rules in the IF-THEN in five

stages. The stages are illustrated with examples that characterize the essence of the
method. The experimental part contains an implementation example using the IRIS
[4] data set. By employing the method of rule base design at different initially set
values of membership function count, fuzzy rules were obtained through clustering.
The performed experiments led to the conclusion that the acquired rules correctly
describe the data and thus a rule base is generated. The extracted rules can help
discover and then analyze the hidden knowledge in data sets.

7.2 Brief Review of Related Works
Cluster analysis is one of the basic techniques applied in the data analysis. The classical
(hard) clustering methods limit the belonging of each point of the data set to exactly
one cluster [5].
Fuzzy set theory proposed by [21] gave the idea of the uncertainty of belonging

which was described by a membership function [11, 18, 20, 19]. The use of fuzzy sets
provides imprecise class membership information. Application of fuzzy set theory in
cluster analysis was early described in the work of Bellman, Kalaba and Zadeh [2] and
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Ruspini [13].
According to the literature in the area of fuzzy clustering, the FCM clustering al-

gorithms defined by Dunn [6] and generated by Bezdek [3] are the well-known and
powerful methods applied in fuzzy cluster analysis. Nowadays classical fuzzy cluster-
ing algorithms have been widely studied. Even now, there are on-going studies on the
application of the FCM algorithm for the needs of various sectors [1, 12].
Obtaining the rules as a result of fuzzy clustering is widely represented in biblio-

graphic sources. One of the first who fully described it [10]: fuzzy clustering offers
various possibilities for learning fuzzy IF-THEN rules from data for classification tasks
as well as for function approximation problems like in fuzzy control.
The author under consideration has made a great contribution in obtaining the rules

from fuzzy clustering [8]. The given book offers timely and important introduction to
fuzzy cluster analysis, its methods and areas of use. The book systematically describes
the various fuzzy clustering techniques so it is possible to choose the method that is
the most appropriate for solving the problems. There is a good and very comprehensive
review of the literature on the subject of research, pattern recognition, data analysis
and rules output.
Analytical evaluation of the FCM and fuzzy system models is given in this work [15].

It can be concluded that studies on obtaining the rules with the help of FCM algorithm
are being actively conducted, which has a significant impact on the emergence of new
knowledge as a result of the use of the methodology.

7.3 System Identification Using Fuzzy Clustering
In general, the identification of the system involves structure identification and param-
eter identification. The structure identification consists of initial rule generation after
elimination of insignificant variables in the form of IF-THEN rules and their fuzzy sets.
Parameter identification includes consequent parameter identification based on certain
objective criteria.
The model proposed by Takagi and Sugeno [14] is called TS fuzzy model, the

consequent part is expressed as a linear combination of antecedents. In TS model the
system with N rules and m antecedents can be expressed as:

R1 : IF x1 isA
1
1 andx2 isA

1
2 and ... and xm isA1

m THEN y1 = P 1
0 +P 1

1 x1+...+P 1
mxm

...

RN : IF x1 isA
N
1 andx2 isA

N
2 and ... and xm isAN

m THEN yN = PN
0 +PN

1 x1+...+PN
m xm

where xi is the i-th antecedent (i = 0, 1, ...,m), Rj and yj represent the j-th rule
and its consequent (j = 1, ..., N), respectively and P j

i are the consequent parameters.
When input-output data are available a priori, fuzzy clustering is a technique that

can be used for structure identification. Then, the consequent parameters can be
optimized by the least square estimation (LSE) given by Takagi and Sugeno.
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Figure 7.1: Example with two clusters. Cluster centres are marked with solid circles.

The identification of the system using fuzzy clustering involves formation of clusters
in the data space and translation of these clusters into TSK rules so that the model
obtained is close to the system being identified.
The FCM clustering algorithm, which has been widely studied and applied, needs

a priori knowledge of the number of clusters. Whenever FCM requires a desired
number of clusters and initial guess positions for each cluster center, the output rules
strongly depend on the choice of initial values as the FCM algorithm iteratively forms a
suitable cluster pattern in order to minimize an objective function dependent of cluster
locations.
For example, we have the feature space with two clusters (see Fig.(7.1) ):
The plot of the clusters in Fig.(7.1) suggests a relation between the variable x on

the horizontal axis and y on the vertical axis. For example, the cluster in the upper
right hand corner of the plot indicates, in very loose terms, that whenever x is “high”,
defined as near the right end of the horizontal axis, then y is also “high”, defined as
near the top end of the vertical axis. The relation can be described by the rule:

IF x is high THEN y is high

It seems possible to make some intuitive definitions of the two instances of the word
“high” in the rule, based on the location of the cluster centre. The cluster in the lower
left part of the Fig.(7.1) could be described as:

IF x is low THEN y is low

7.4 Fuzzy C-Means Clustering
The classical c-means algorithm [5] tries to locate clusters in the multi-dimensional
feature space. The goal is to assign each point in the feature space to a particular
cluster. The basic approach is as follows:

1. Manually seek the algorithm with c cluster centres, one for each cluster we
are seeking. This requires prior information from the outside world about the
number of different clusters into which the points are to be divided; thus the
algorithm belongs to the class of supervised algorithms.

2. Each point is assigned to the closest cluster centre to it.
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3. A new cluster centre is computed for each class by taking the mean values of
the coordinates of the points assigned to it.

4. If not finished according to some stopping criterion, go to step 2.

Formally, the c-means algorithm finds a centre in each cluster, minimizing an objective
function of a distance measure. The objective function depends on the distances
between vectors uk and cluster centres ci, and when the Euclidean distance is chosen
as a distance function, the expression for the objective function is:

J =
c∑

i=1
Ji =

c∑
i=1

 ∑
k,uk∈Ci

‖uk − ci‖2

 (7.1)

where Ji is the objective function within cluster i.
The partitioned clusters are typically defined by a c×K binary characteristic matrix

M , called the membership matrix, where each element mik is 1 if the k-th data point
uk belongs to cluster i, and 0 otherwise. Since a data point can only belong to one
cluster, the membership matrix M has these properties:

P1: the sum of each column is one.

P2: the sum of all elements is K.

If the cluster centres ci are fixed, the mik that minimise Ji can be derived as

mik =
{

1, if ‖uk − ci‖2 ≤ ‖uk − cj‖2

0, otherwise
, ∀j 6= i. (7.2)

That is, uk belongs to cluster i if ci is the closest centre among all centres. If, on
the other hand, mik is fixed, then the optimal centre ci that minimises Eq.(7.3) is the
mean of all vectors in cluster i:

ci = 1
|Ci|

∑
k,uk∈Ci

uk. (7.3)

where |Ci| is the number of objects in Ci, and the summation is an element-by-
element summation of vectors.
The algorithm is iterative, and there is no guarantee that it will converge to an

optimal solution. The performance depends on the initial positions of the cluster
centres, and it is advisable to employ certain method to find good initial cluster
centres. It is also possible to initialize a random membership matrix M first and then
follow the iterative procedure.
It is reasonable to assume that points between the two cluster centres, have a

gradual membership of both clusters. Naturally this is accommodated by fuzzifying
the definitions of “low” and “high”. The FCM algorithm allows each data point to
belong to a cluster to a degree specified by a membership grade, and thus each point
may belong to several clusters.
The FCM algorithm partitions a collection ofK data points specified bym-dimensional

vectors uk (k = 1, 2, ...,K) into c fuzzy clusters, and finds a cluster centre in each,
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Algorithm 7.1 [9]
The hard c-means algorithm has five steps:

1. Initialize the cluster centres ci (i = 1, 2, ..., c). This is typically achieved by
randomly selecting c points from the data points.

2. Determine the membership matrix M by Eq.(7.2).

3. Compute the objective function Eq.(7.1). Stop if either it is below a certain
threshold value, or its improvement over the previous iteration is below a certain
tolerance.

4. Update the cluster centres according to Eq.(7.3).

5. Go to step 2.

minimizing an objective function. FCM is different from hard c-means, mainly because
it employs fuzzy partitioning, where a point can belong to several clusters with degrees
of membership. To accommodate the fuzzy partitioning, the membership matrix M is
allowed to have elements in the range [0, 1]. A point’s total membership of all clusters,
however, must always be equal to unity maintaining the above mentioned properties
(P1, P2) of the M matrix. The objective function is a generalization of Eq.(7.1):

J(M, c1, c2, ....cc) =
c∑

i=1
Ji =

c∑
i=1

K∑
k=1

mq
ikd

2
ik (7.4)

where mik is a membership between 0 and 1, ci is the centre of fuzzy cluster i,
dik = ||uk − ci|| is the Euclidean distance between the i-th cluster centre and k-th
point, q ∈ [1,∞) is a weighting exponent.
There are two necessary conditions for J to reach a minimum:

ci =
∑K

k=1 m
q
ikuk∑K

k=1 m
q
ik

(7.5)

and

mik = 1∑c
j=1 ( dik

djk
)2/(q−1) (7.6)

The algorithm is simply an iteration through the preceding two conditions.
Alternatively, the cluster centres can be initialized first, before carrying out the

iterative procedure. The algorithm may not converge to an optimum solution and
the performance depends on the initial cluster centres, just as in the case of the hard
c-means algorithm.
To demonstrate the FCM algorithm facilities, the following data set has been selected

(see Table 7.1).
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Algorithm 7.2 [9]
In a batch mode operation, the FCM algorithm determines the cluster centres ci and
the membership matrix M using the following steps:

1. Initialize the membership matrix M with random values between 0 and 1 within
the constraints of P1 and P2.

2. Calculate c cluster centres ci (i = 1, 2, ..., c)using Eq.(7.5).

3. Compute the objective function according to Eq.(7.4). Stop if either it is below
a certain threshold level or its improvement over the previous iteration is below
a certain tolerance.

4. Compute a new M using Eq.(7.6).

5. Go to step 2.

Table 7.1: Training set.

X1 -1.31 -0.64 0.36 1.69 -0.98 -0.98 0.02 0.36 -0.31 1.02 1.02 -0.31 1.36 -1.31
X2 -0.63 -0.21 -1.47 0.63 -0.63 1.47 0.21 0.21 -0.63 0.63 -0.63 1.89 -1.47 0.63

By means of the FCM algorithm the following cluster centres have been derived (see
Fig.(7.2)).
The initial cluster centres were generated arbitrarily, whereas the final ones were

formed as a result of the FCM algorithm execution. In accordance with the algorithm,
objective function values were computed by Eq.(7.4) and membership matrix M was
calculated by Eq.(7.6). Membership function distribution for two clusters is shown in
Fig.(7.3).
In further experiments an attempt was made to enlarge the number of clusters. The

following objective function values were derived:

2-clusters: Objective function = 17.75 (2 iterations)

3-clusters: Objective function = 9.47 (3 iterations)

4-clusters: Objective function = 5.02 (5 iterations).

The results are shown in Fig.(7.4).
It can be concluded that the FCM algorithm can be successfully applied in fuzzy

clustering and its use is one of the preconditions for rule base extraction.
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(a) (b)

Figure 7.2: Initial (a) and final (b) cluster centres.

Figure 7.3: Membership functions for two clusters.
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(a) (b)

(c)

Figure 7.4: FCM algorithm results: (a) two, (b) three and (c) four clusters.
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Table 7.2: Artificial data set.

X1 0.14 0.28 0.42 0.57 0.71 0.85
X2 0.85 0.42 0.71 0.28 0.57 0.14

Figure 7.5: Data distribution in clusters.

7.5 Rules Acquisition with the Help of Fuzzy
Clustering

7.5.1 Membership Matrix Transformation into Membership
Functions

Further, an attempt was made to expand the application scope of FCM algorithm and
obtain data characterizing the regularities in the form of the rule. All observations
were made based on the data samples provided in Table 7.2.
After the cluster center initialization using FCM clustering algorithm (c = 2, the

maximum number of iterations = 100), two clusters were found, calculated accord-
ing to Eq.(7.5), membership matrix U and membership functions distribution were
obtained using Eq.(7.6) (see. Fig.(7.5) and Fig.(7.6)).
The cluster centers V = {(0.6910; 0.2991), (0.2991; 0.6908)} and membership ma-

Figure 7.6: Distribution of membership functions in clusters.
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Table 7.3: Distribution of membership functions into classes.

X1 (MF1) X1 (MF2) X2 (MF1) X2 (MF2) Clusters
1.0000 0 0 1.0000 0 1
0.8028 0.1972 0.6056 0.3944 0 1
0.6056 0.3944 0.1972 0.8028 0 1
0.3944 0.6056 0.8028 0.1972 1 0
0.1972 0.8028 0.3944 0.6056 1 0

0 1.0000 1.0000 0 1 0

Figure 7.7: The membership function elements u2,kand cluster centers.

trix U (with two membership functions), as shown in Table 7.3, were obtained.
As can be seen from the table, Cluster 1 contains points x4, x5, x6, whereas points

x1, x2 and x3 correspond to Cluster 2.
Figure 7.7 shows the cluster centers and the projection of the membership function

elements on the u axis.
Furthermore, it was assumed that the membership functions µi(xk) = uik for all

i = 1, 2 and k = 1, ..., 6. There was a tendency to make the membership functions with
the help of linguistic variables, which makes it easier to interpret the fuzzy systems.
Terms such as “high”, “low” or “medium” may well describe the one-dimensional
position of the object. In case they are multi dimensional objects, it no longer is
so easy. For example, how could the membership functions shown in Fig.(7.8) be
described? Projection method is a common technique in fuzzy set theory [8]. The
values of the elements in membership functions uik are projected to the coordinate
axes, resulting in the profile shown in Fig.(7.8b).
Thus, the membership functions in the coordinate axis x1 can be interpreted by the

terms “low” or “x1 is low”. Accordingly, the functions in the coordinate axis x2 can be
interpreted as “high” or “x2 is high”. This method is called the cylindrical extension
that specifies that the multi-dimensional data vector is used as the scalar argument of
membership function in the projection space. The membership functions are extended
with other dimensions as profile. In this way the original clusters with cylindrical ex-
tension profile conjunction - x1 can be described as “low” and x2 as “high”. Projection
method enables to approximate the fuzzy sets with convex membership functions, as
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(a) (b)

Figure 7.8: Interpretation of (a) membership functions and (b) projection profile.

Figure 7.9: Membership function profiles after approximation.

it is shown in Fig.(7.9).

7.5.2 The Essence of Fuzzy Classifiers
In many classification tasks the goal is usually the definition of class objects. The
goal of fuzzy clustering is also the distribution of elements with a higher membership
functions into classes. Very important is the question of the possibility to get the fuzzy
rules describing the clustering results. In two-dimensional case, each rule is associated
with two rectangular intervals which characterize the IF conditional part function of the
describing rule. Figure 7.10 illustrates the essence of the two-dimensional classification.
Classification problems in the simplest case (two-dimensional space) for two classes,

separated with the help of a function, can be solved by using the fuzzy classification
rules [20].
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Figure 7.10: Essence of linearly separable classification.

To describe a fuzzy classification problem, the following assumptions are made.
Assume, there exist p variables x1, x2, ..., xp, which are defined in the interval Xi =
[ai, bi], ai < bi. The final class set C is given for which the following distribution is
valid:

class : X1 ×X2 × ...Xp → C.

The objective is to find a classifier that could solve classification problem [8]. The
fuzzy classifier is based on the set of final rules R for which the following holds:

R : Ifx1 isµ(1)
R and...andxp isµ(p)

R Then class isCR.

CR ∈ C is one of the classes. The µ(i)
R are assumed to be fuzzy sets on Xi, i.e.

µ
(i)
R : Xi → [0, 1]. Fuzzy sets µ(i)

R are directly included in the rule. In real situations
they can be replaced by the corresponding linguistic variables. Actually, input data
vector is ascribed to class C if fuzzy rules determine vector’s higher membership in
class C. In [8] it is shown how 2 rules are obtained in the two-dimensional case:

Ifx isµ1 and y is v1 Then class isN
Ifx isµ2 and y is v2 Then class isP

7.5.3 Designing a Fuzzy Rule Base
In solving many practical applications, the information necessary for the development
and implementation of a fuzzy system can be divided into two kinds: numerical (the
result of measurements) and linguistic (obtained from experts). Most of fuzzy systems
are implemented using the second kind of knowledge, which is mostly represented in
the form of a fuzzy rule base. In cases when a fuzzy system with the numerical
data has to be developed, certain important problems appear. A possible way to
solve them is to use the neural-fuzzy systems, where neural networks are employed for
rule base optimization. As a disadvantage of these systems, a long lasting iterative
learning algorithm can be mentioned. In what follows, a method for knowledge base
construction from the numerical data, proposed in [16, 17], is discussed.
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Figure 7.11: Partition of input and output data into intervals and corresponding mem-
bership functions.

For clarity purposes let us assume that a fuzzy system with two inputs (input signals)
and one output is being constructed. Thus the following form of learning data is
required:

(x1(i), x2(i), d(i)), i = 1, 2, ...

where x1(i) and x2(i) denote the incoming data but d(i) is the expected output.
The task of the system is to form fuzzy rules so that possibly the best result would be
obtained on the output. The task stated can be accomplished in five stages.

Stage 1 - Separation of input and output data

Actually, the minimal and maximal values of the input data are known, so intervals
are determined, in which the allowable values are located: . Each of the intervals is
divided into (2N + 1) parts. For particular interval parts linguistic variables can be
set, for example, SN (smallN),...,S1(small 1), M(middle), L1(large 1),...,LN (largeN)
and their membership functions can be determined. Figure 7.11 shows an example
of similar distribution, where the domain of signal x1 is divided into 5 subintervals
(N = 2), the domain of signal x2 is divided into 7 subintervals (N = 3) but the
domain of the output signal is partitioned into 5 subintervals (N = 2).
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Stage 2 - Construction of fuzzy rules using learning set data

At this stage, membership degrees of learning data (x1(i), x2(i)) and d(i) have to
be determined for each of the selected domains. This is expressed using the values of
membership functions. For example, in Fig.(7.11) the membership degree of x1(1) in
domain L1 is 0.8, in domain L2 − 0.2; membership in other domains is 0. Similarly,
the membership degree of x2(2) in domain M is 1, whereas its membership in other
domains is 0. In the same way we will ascribe x1(i), x2(i) and d(i) to those domains
where they have maximal membership degrees. Say, x1(1) has maximal membership
degree in domain L1, whereas x2(2) in domainM . Thus for each pair of learning data
a single rule can be set, for example, in this way:

(x1(1), x2(1); d(1))→ {x1(1) [max : 0.8 in domainL1] ,
x2(1) [max : 0.6 in domainS1] ; d(1) [max : 0.9 in domainM ]} →

R1 : If (x1isL1 andx2 isS1)Then y isM.

Stage 3 - Determination of confidence degree for each rule

Taking into account that a lot of learning data pairs exist and for each of them a
single rule can be generated, a possibility exists that the rules might be inconsistent.
This relates to the rules having the same condition, but different conclusions. One of
possible solutions to this problem might be assigning the confidence degree to each
rule with a view to further choose the rule with the highest confidence degree. As a
result, not only the problem of rule contradiction would be solved but also the total
number of rules would decrease essentially.
For the rule of the form R : If (x1 isA1 andx2 isA2)Then (y isB) the confidence

degree will be defined as follows:

SP (R) = µA1 (x1)× µA2 (x2)× µB (y) .

Thus rule R1 from the above example will have this confidence degree:

SP
(
R1) = µL1 (x1)× µM1 (x2)× µV (y) = 0.8× 0.6× 0.9 = 0.432.

Stage 4 - Formation of fuzzy rule base

The principle of fuzzy rule formation is shown in Fig.(7.12).
The rule base is set in the form of a table, which is completed with rules as follows.

If a rule is given in the form R1 : If (x1 isL1 andx isS1), Then y isM , the value of
a fuzzy set that is contained in the Then part of the rule, i.e. the value M in this
example, is recorded in the point of intersection of column L1 and row S1. In case
various rules with the same condition exist, a rule with the highest confidence degree
is selected out of them.
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Figure 7.12: Formation of fuzzy rule base.

Stage 5 - Defuzzification

At this stage, mapping f : (x1, x2) → ȳ, where ȳ is the output value of the fuzzy
system, has to be derived using the obtained knowledge base. The defuzzification
is considered completed if a specific value for each linguistic variable is obtained.
To accomplish that, the activity degree of the k-th rule is calculated using formula
τ (k) = µ

A
(k)
1

(x1)× µ
A

(k)
2

(x2). Actually, it is determined which of the obtained rules
is more active for the specified input data vector.
RuleR1 from the above-mentioned example has the activity degree τ (1) = µL1 (x1)×

µM2 (x2). Now, a method of gravity centre determination, say, defuzzification by the
gravity centre method (COGS - Centre of Gravity for Singleton) [20] can be employed
to calculate the output value ȳ:

ȳ =
∑N

k=1 τ
(k)ȳ(k)∑N

k=1 τ
(k)

(7.7)

After all the five stages have been completed successfully, it can be considered that
a fuzzy rule base is generated.
Carrying out the calculation for obtaining the rules with data sample given in Table

7.2 and using the above mentioned method, three rules were obtained:

Rule 1: If X1 is MF1 to degree 1.0 and X2 is MF2 to degree 1.0 Then Class is 2 to
degree 0.95;
Rule 2: If X1 is MF1 to degree 0.8 and X2 is MF1 to degree 0.6 Then Class is 2 to

degree 0.40;
Rule 3: If X1 is MF2 to degree 1.0 and X2 is MF1 to degree 1.0 Then Class is 1 to

degree 0.90.

After the rules are obtained, it is necessary to check their “quality”. Since the rules
obtained contain linguistic variables, as a result of the defuzzification process we will
rewrite activities of all rules (see Table 7.4).
Now let us accomplish rule check procedure using Eq.(7.7). As an example, the

first input data vector (0.14; 0.85) is considered.
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Table 7.4: Input data and activities of the rules obtained.

X1 X2 Rule 1 Rule 2 Rule 3 Classes
0.14 0.85 1 1 1 0 0 0 0 1
0.28 0.42 0.8 0.4 0.8 0.6 0.2 0.6 0 1
0.42 0.71 0.6 0.8 0.6 0.2 0.4 0.2 0 1
0.57 0.28 0.4 0.2 0.4 0.8 0.6 0.8 1 0
0.71 0.57 0.2 0.6 0.2 0.4 0.8 0.4 1 0
0.85 0.14 0 0 0 1 1 1 1 0

Table 7.5: Rules derived from the IRIS database.
Rule 1: if X1 is MF1 to degree 0.75 and X2 is MF2 to degree 0.87 and X3 is MF1 to degree 0.92 and X4 is MF1 to degree 1.00 then Class is 1 to degree 0.57
Rule 2: if X1 is MF1 to degree 0.94 and X2 is MF1 to degree 0.88 and X3 is MF1 to degree 0.95 and X4 is MF1 to degree 0.92 then Class is 1 to degree 0.68
Rule 3: if X1 is MF2 to degree 0.67 and X2 is MF1 to degree 0.58 and X3 is MF2 to degree 0.68 and X4 is MF2 to degree 0.67 then Class is 2 to degree 0.17
Rule 4: if X1 is MF1 to degree 0.67 and X2 is MF1 to degree 0.75 and X3 is MF2 to degree 0.58 and X4 is MF1 to degree 0.54 then Class is 2 to degree 0.15
Rule 5: if X1 is MF2 to degree 0.56 and X2 is MF2 to degree 0.54 and X3 is MF2 to degree 0.63 and X4 is MF2 to degree 0.63 then Class is 2 to degree 0.11
Rule 6: if X1 is MF1 to degree 0.80 and X2 is MF1 to degree 1.00 and X3 is MF1 to degree 0.58 and X4 is MF1 to degree 0.63 then Class is 2 to degree 0.28
Rule 7: if X1 is MF2 to degree 0.56 and X2 is MF1 to degree 0.88 and X3 is MF2 to degree 0.58 and X4 is MF1 to degree 0.50 then Class is 2 to degree 0.13
Rule 8: if X1 is MF1 to degree 0.75 and X2 is MF1 to degree 0.71 and X3 is MF1 to degree 0.51 and X4 is MF2 to degree 0.54 then Class is 2 to degree 0.14
Rule 9: if X1 is MF1 to degree 0.53 and X2 is MF1 to degree 0.71 and X3 is MF2 to degree 0.69 and X4 is MF2 to degree 0.63 then Class is 2 to degree 0.15
Rule 10: if X1 is MF1 to degree 0.53 and X2 is MF2 to degree 0.58 and X3 is MF2 to degree 0.59 and X4 is MF2 to degree 0.63 then Class is 2 to degree 0.11
Rule 11: if X1 is MF2 to degree 0.94 and X2 is MF2 to degree 0.75 and X3 is MF2 to degree 0.97 and X4 is MF2 to degree 0.88 then Class is 3 to degree 0.57
Rule 12: if X1 is MF1 to degree 0.83 and X2 is MF1 to degree 0.79 and X3 is MF2 to degree 0.59 and X4 is MF2 to degree 0.67 then Class is 3 to degree 0.25
Rule 13: if X1 is MF2 to degree 0.94 and X2 is MF1 to degree 0.75 and X3 is MF2 to degree 1.00 and X4 is MF2 to degree 0.92 then Class is 3 to degree 0.62

Activity of Rule 1: (0.14×1+0.85×1) / (1+1)=0.495
Activity of Rule 2: (0.14×1+0.85×0) / (1+0)=0.14
Activity of Rule 3: (0.14×0+0.85×0) /(0+0)=0.

Thus we come to a conclusion that data vector (0.14; 0.85) corresponds to the
activities of Rule 1 and Rule 2, which ascribe that vector to Cluster 2, as the obtained
rules foresee that.

7.6 Example: Iris data set
A well-known IRIS database [4] was selected to perform experiments. The objective
of the experiments was:

1. To acquire rules from IRIS data base using the FCM algorithm.

2. To ascertain the effect of membership function number on the count of acquired
rules.

3. To check the quality of the rules obtained.

In the first part of the experiments, 3 membership functions were calculated for 3
clusters. Four rules were acquired for Class 1, three rules for Class 2 and 11 rules for
Class 3. The rules are shown in Table 7.5 [7].
In the second part of experiments, different initial values of membership functions

were selected and rule obtaining was performed (see Table 7.6).
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Table 7.6: Dependence of the obtained rule number on the count of initially set mem-
bership functions.

Number of memberships Class 1 Class 2 Class 3 Count
2 2 8 3 13
3 4 3 11 18
4 7 11 13 31
5 13 16 18 47
6 21 19 22 62

Figure 7.13: The graph of dependence of the number of rules on the number of mem-
bership functions.

Dependence shown graphically in Fig.(7.13).
The third part of experiments checks the quality of the obtained rules (see Table

7.5). As a result of the experiments performed, it was stated that the rules obtained
for the particular class correctly describe class elements, i.e. for any data vector at
least one obtained rule will suit, which brings that data vector to the corresponding
class. It should be noted that by increasing the number of functions (as shown in
Table 7.6), it is possible to obtain sufficiently many rules, which describe the data
accurately.

7.7 Conclusions
This chapter presents the results of the research on fuzzy rule construction. The
obtained rules form a rule base of particular data and are represented in the form of
IF-THEN rules. Methods of fuzzy rule base design are mostly used in fuzzy control
systems. This chapter, however, concentrates on the description of the methodology
that enables obtaining fuzzy rules from the numerical data. The major advantage of
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that methodology is a possibility of rule interpretation in the form clear to the user.
Since the method employs elements of fuzzy set theory, the main problem is related
to the clustering of initial data that allows one to determine object allocation to
classes and obtain characteristics of membership functions. To achieve that, the fuzzy
clustering algorithm FCM is used. After the membership functions are determined,
the procedure of designing a base of fuzzy rules is performed in 5 stages: (1) dividing
the space of input and output signals into areas, (2) constructing fuzzy rules on the
basis of learning data, (3) ascribing truth degree to each rule, (4) creating a base
of fuzzy rules, and finally (5) defuzzification intended to calculate output values of
the fuzzy system. The stages are illustrated with an example that characterizes the
essence of the method. The experimental part contains method implementation on
the basis of the famous IRIS database. In the course of experiments, fuzzy rules were
obtained using a method of fuzzy rule base design at different values of the count of
membership functions. The experiments have shown that the rules obtained correctly
describe the initial data. Thus, a base of fuzzy rules was obtained, which enables one
to positively evaluate the methodology discussed in the paper under consideration.
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